K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

*)Cách cho THCS Yahoo Hỏi & Đáp

*)Cách cho THPT

Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)

Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)

Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)

Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]

\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)

8 tháng 4 2017

Thắng bị ngược dấu ngay dòng dùng schwarz rồi kìa

8 tháng 4 2017

Ta có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)

NV
27 tháng 3 2021

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Ta có:

\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\) 

Tương tự ...

Cộng lại ta có:

\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)

Do đó ta chỉ cần chứng minh:

\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)

5 tháng 2 2022

\(\Rightarrow\left(x+y+z\right)^2\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\ge3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{3\left(x+y+z\right)}{xyz}\Rightarrow x+y+z\ge\dfrac{3}{xyz}\)

\(x+y+z=\dfrac{x+y+z}{3}+\dfrac{2\left(x+y+z\right)}{3}\ge\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{2}{3}.\dfrac{3}{xyz}\ge\dfrac{1}{3}\left(\dfrac{9}{x+y+z}\right)+\dfrac{2}{xyz}=\dfrac{3}{x+y+z}+\dfrac{2}{xyz}\left(đpcm\right)\)

\(dấu"="xảy\) \(ra\Leftrightarrow x=y=z=1\)

31 tháng 10 2017

Guể :v t nhớ làm bài này rồi mà :v

Đặt \(x=\dfrac{bc}{a^2};y=\dfrac{ac}{b^2};z=\dfrac{ab}{c^2}\)\(\Rightarrow\left\{{}\begin{matrix}abc=1\\a,b,c>0\end{matrix}\right.\)

\(BDT\Leftrightarrow\dfrac{a^4}{b^2c^2+a^2bc+a^4}+\dfrac{b^4}{a^2c^2+ab^2c+b^4}+\dfrac{c^4}{a^2b^2+abc^2+c^4}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\)

Cần chứng minh \(\dfrac{\left(a^2+b^2+c^2\right)^2}{b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\ge b^2c^2+a^2bc+a^2c^2+ab^2c+a^2b^2+abc^2+a^4+b^4+c^4\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge ab^2c+a^2bc+abc^2\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) *Đúng theo AM-GM*

31 tháng 10 2017

uh bài này làm rồi, tại lúc đó đầu hơi ngu nên không nhớ ra, thông cảm nhébucminh

NV
19 tháng 5 2021

Đặt \(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow abc=1\)

\(P=\dfrac{a^2bc}{b+c}+\dfrac{ab^2c}{c+a}+\dfrac{abc^2}{a+b}=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(P=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
20 tháng 10 2018

Lời giải:

Ta có: \(x+y+z=xyz\Rightarrow x(x+y+z)=x^2yz\)

\(\Rightarrow x(x+y+z)+yz=x^2yz+yz\)

\(\Rightarrow (x+y)(x+z)=yz(x^2+1)\)

Do đó: \(\frac{1+\sqrt{x^2+1}}{x}=\frac{1+\sqrt{\frac{(x+y)(x+z)}{yz}}}{x}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}\) theo BĐT AM-GM:

Thực hiện tương tự với các phân thức khác ta suy ra:

\(\text{VT}\leq \frac{1+\frac{1}{2}(\frac{x+y}{y}+\frac{x+z}{z})}{x}+\frac{1+\frac{1}{2}(\frac{y+z}{z}+\frac{y+x}{x})}{y}+\frac{1+\frac{1}{2}(\frac{z+x}{x}+\frac{z+y}{y})}{z}\)

\(\text{VT}\leq 3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3(xy+yz+xz)}{xyz}\)

Mà theo AM-GM:

\(\frac{3(xy+yz+xz)}{xyz}\leq \frac{(x+y+z)^2}{xyz}=\frac{(xyz)^2}{xyz}=xyz\)

Do đó: \(\text{VT}\leq xyz\)

Ta có đpcm.

23 tháng 10 2018

may báo cáo Tiép đi

Căn bậc hai. Căn bậc ba