cho tam giác ABC.Trên tia đối of tia AB lấy điểm D sao cho AD=AB.Trên cạnh AC lấy điểm E sao cho AE=1/3 AC.Tia BE cắt CD ở M. Chứng minh rằng:
a.M là trung điểm ò CD
b.AM=1/2BC
làm được thì mk thưởng cho một nụ hôn nè!!!
Moa,chụt....chụt....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AD = AB và AE = CD. Vì AD = AB, nên tam giác ABD là tam giác cân tại A. Tương tự, tam giác AEC là tam giác cân tại A. Do đó, ta có ∠ABD = ∠BAD và ∠CAE = ∠EAC. Vì ∠BAD = ∠CAE, nên ∠ABD = ∠EAC. Vì tam giác ABD và tam giác AEC là tam giác cân tại A, nên ta có BD = AB và CE = AE. Do đó, ta có BD = AB = AE = CE. b) Ta có BD = AB và CE = AE. Vì BD = AB và CE = AE, nên ta có BD = CE. Vì BD = CE, nên tam giác BCD là tam giác cân tại B. Vì tam giác BCD là tam giác cân tại B, nên ta có ∠BCD = ∠CBD. Vì ∠BCD = ∠CBD, nên ∠BCD + ∠CBD = 180°. Do đó, ta có ∠BCD + ∠CBD = 180°. Vì ∠BCD + ∠CBD = 180°, nên tam giác BCD là tam giác đều. Vì tam giác BCD là tam giác đều, nên ta có BE = CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Vì M là trung điểm của BE, nên ta có BM = ME. Vì N là trung điểm của CD, nên ta có CN = ND. Vì BM = ME và CN = ND, nên ta có BM + CN = ME + ND. Do đó, ta có BM + CN = ME + ND. Vì BM + CN = ME + ND, nên ta có BN = MD. Vì BN = MD, nên tam giác BMD là tam giác cân tại B. Vì tam giác BMD là tam giác cân tại B, nên ta có ∠BMD = ∠BDM. Vì ∠BMD = ∠BDM, nên ∠BMD + ∠BDM = 180°. Do đó, ta có ∠BMD + ∠BDM = 180°. Vì ∠BMD + ∠BDM = 180°, nên tam giác BMD là tam giác đều. Vì tam giác BMD là tam giác đều, nên ta có BM = MD. Vì BM = MD, nên ta có BM = MD = AM. Vậy ta có AM = AN.
Tam giác BDC có CA là đường trung tuyến, mà E thuộc AC và AE = CA/3 nên E là trọng tâm của tam giác BDC suy ra BE đi qua trung điểm M của CD.
b) Trên tia đối của tia MA lấy I sao cho MI = MA suy ra AM = AI/2.
c/m tam giác AMD = tam giác IMC (c-g-c) suy ra góc DAM = góc MIC suy ra BA//CI và CI = AD = AB.
c/m tamgiác ABC = tam giác CIA (c-g-c) suy ra AI = BC mà AM = AI/2 nên AM = BC/2.
đây là toán lớp 7 nếu biết đl về đg Tb rồi thì bạn có thể làm phần b = cách khác ngắn hơn
thà ko làm còn hơn