Cho tam giác ABC vuông tại A, đường cao AH. Trên HC lấy M sao cho BA= BM. Tia Phán giác của góc ABC cắt AH ở N và AM ở E.
a. Cmr AM là tia Phân Giác của Góc HAC
b. MN vuông góc với AB
giup mình vơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAM có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAM cân tại B
=>BA=BM
b: góc BAO+góc CAO=90 độ
góc BOA+góc OAH=90 độ
mà góc CAO=góc OAH
nên góc BAO=góc BOA
nên ΔBAO cân tại B
=>BA=BO=BM
=>BO=BM
Xét ΔBAC và ΔBMC có
BA=BM
góc ABC=góc MBC
BC chung
=>ΔBAC=ΔBMC
=>góc BMC=90 độ
=>OK vuông góc BM
góc KOM+góc BOK=góc BOM
góc KMO+góc BMH=góc BMO
mà góc BOK=góc BMH; góc BOM=góc BMO
nên góc KOM=góc KMO
=>ΔKMO cân tại K
a: Xét ΔAHD và ΔAID có
AH=AI
góc HAD=góc IAD
AD chung
=>ΔAHD=ΔAID
=>góc HAD=góc IAD
=>AD là phân giác của góc HAC
b: ΔAHD=ΔAID
=>góc AID=góc AHD=90 độ
Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>MD=MC
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là đường cao
=>AN,MI,CH đồng quy
=>AN,MI,BC đồng quy
a: XétΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC∼ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot HC\)
c: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
Do đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
a/ Xét tam giác ABC và tam giác HAC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{AHC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác HAC (g - g).
b/ Xét tam giác ABC vuông tại A; AH là đường cao:
\(AH^2=BH.HC\) (Hệ thức lượng).
c/ Xét tam giác ABC và tam giác DEC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{EDC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác DEC (g - g).
d/ Tam giác ABC ∼ Tam giác DEC (cmt).
\(\Rightarrow\dfrac{BC}{EC}=\dfrac{AC}{DC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
Xét tam giác BEC và tam giác ADC có:
+ \(\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
+ \(\widehat{C}chung.\)
\(\Rightarrow\) Tam giác BEC ∼ Tam giác ADC (c - g - c).