rút gọn hàm số: \(\frac{5.x-x^2}{-x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :\(y=f\left(x\right)=\frac{5x-x^2}{x-5}\)
\(\Leftrightarrow y=f\left(x\right)=\frac{-x\left(x-5\right)}{x-5}\)
\(\Leftrightarrow y=f\left(x\right)=-x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y=f\left(x\right)=\frac{-\left(x^2-5x\right)}{x-5}=\frac{-x\left(x-5\right)}{x-5}=-x\)
x=-2005 => y= f(x)=-(-2005)=2005
![](https://rs.olm.vn/images/avt/0.png?1311)
1) a) \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
\(=\frac{x+3\sqrt{x}+2}{x-4}+\frac{2x-4\sqrt{x}}{x-4}+\frac{-2-5\sqrt{x}}{x-4}\)
\(=\frac{3x-6\sqrt{x}}{x-4}\)
b) \(Q=1\Leftrightarrow3x-6\sqrt{x}=x-4\)
\(\Leftrightarrow2x-6\sqrt{x}+4=0\)
Đặt \(\sqrt{x}=t\)\(\left(t\ge0\right)\)
\(pt\Leftrightarrow2t^2-6t+4=0\)
\(\Delta=\left(-6\right)^2-4.2.4=4,\sqrt{\Delta}=2\)
pt ẩn phụ có 2 nghiệm:
\(t_1=\frac{6+2}{4}=2\);\(t_2=\frac{6-2}{4}=1\)
\(\Rightarrow x\in\left\{1;4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{x-2\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne4\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2x-5\sqrt{x}+2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\notin\left\{5;-5;0\right\}\)
\(A=\dfrac{x}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{x\left(x+5\right)}\cdot\dfrac{x\left(x+5\right)}{x-5}-\dfrac{x}{x-5}\)
\(=\dfrac{x}{\left(x-5\right)\left(x+5\right)}-1-\dfrac{x}{x-5}\)
\(=\dfrac{x-x^2+25-x^2-5x}{\left(x-5\right)\left(x+5\right)}=\dfrac{-2x^2-4x+25}{\left(x-5\right)\left(x+5\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(f\left(x\right)=\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|\)
\(f\left(-1\right)=\left|-1-3\right|=4\)
\(f\left(5\right)=\left|5-3\right|=\left|2\right|=2\)
b: f(x)=10
=>\(\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)
c: \(A=\dfrac{f\left(x\right)}{x^2-9}=\dfrac{\left|x-3\right|}{\left(x-3\right)\left(x+3\right)}\)
TH1: x<3 và x<>-3
=>\(A=\dfrac{-\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{-1}{x+3}\)
TH2: x>3
\(A=\dfrac{\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{5\left(10-x\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x+2\right)+2\left(x+5\right)\left(x-5\right)+5\left(10-x\right)}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3-3x+2x^2}{2x\left(x+5\right)}=\frac{x\left(x^2+2x-3\right)}{2x\left(x+5\right)}\)
\(=\frac{\left(x-1\right)\left(x+3\right)}{2\left(x+5\right)}\)
( điều kiện x\(\ne\)5)
\(=\frac{x\left(5-x\right)}{5-x}=x\)
\(\frac{5.x-x^2}{-x+5}=\frac{5.x-x.x}{5-x}=\frac{5.x}{5}=x\)
các bạn chú ý đến công thức hàm số nếu đọc bài này ko hiểu