tìm x nguyên để các biểu thức sau có giá trị nhỏ nhất:
\(C=\left|x+4\right|-1996\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\left|x+4\right|\ge0\forall x\)
\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)
Dấu '=' xảy ra khi x=-4
Nhận xét: |x+4|>=0 với mọi x nguyên, dấu bằng xảy ra <=> x=-4
|x+4|+1996>=1996 với mọi x nguyên, dấu bằng xảy ra <=> x=-4
Vậy B đạt GTNN tại B=1996 với x=-4
B đạt giá trị nhỏ nhất là : 1996
Vì giá trị tuyệt đối nên là số là số nguyên dương => |X+4| = 0
=> 0 + 1996 = 1996
`a)(x-1)^2>=0`
`=>(x-1)^2+2008>=2008`
Hay `A>=2008`
Dấu "=" xảy ra khi `x-1=0<=>x=1`
`b)|x+4|>=0`
`=>|x+4|+1996>=1996`
Hay `B>=1996`
Dấu "=" xảy ra khi `x+4=0<=>x=-4`
a) ta thấy (x-1)^2 >/=0
->(x-1)^2 +2008>/= 0
dấu = xảy ra khi và chỉ khi (x-1)^2= 0
<=> x=1
vậy A có giá trị bằng 2008 khi và chỉ khi x=1
b) Ta có: \(\left|x+4\right|\ge0\forall x\)
\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
Có |x+4| \(\ge\) với mọi x (Định nghĩa giá trị tuyệt đối)
Suy ra B=|x+4|+1996 \(\ge\) 1996 với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\) |x+4| = 0 \(\Leftrightarrow\) x+4 = 0 \(\Leftrightarrow\) x = -4
Vậy \(B_{m\text{ax}}=1996\) tại x = -4
ta có: [x+4] >= 0 Vx
=> [x+4] +1996 \(\ge\) 1996
dấu = xảy ra \(\Leftrightarrow\) x+4 =0
\(\Leftrightarrow\) x = -4
=> MinB = 1996 \(\Leftrightarrow\) x = -4
a) Có \(\left(x-1\right)^2\ge0\)
<=> A \(\ge2014\)
Dấu "=" <=> x = 1
b) Có \(\left|x+4\right|\ge0\)
<=> B \(\ge2014\)
Dấu "=" <=> x = -4
a) \(A=\left(x-1\right)^2+2014\ge2014\)
Dấu = xảy ra khi x = 1
b) \(B=\left|x+4\right|+2014\ge2014\)
Dấu = xảy ra khi x = -4
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
x=1992
tk cho minh nha
x=1992