K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

xét hiệu:A=4(9x+y)-(7x+4y)

              A=36x+4y-7x-4y

              A=29x\(\Rightarrow\)A chia hết cho29

        mà 7x+4y chia hết cho29\(\Rightarrow\)4(9x+y) chia hết cho 29

       vì (4;29)=1\(\Rightarrow\)9x+y chia het cho 29

Vậy nếu 7x+4y chiahet cho 29 thi 9x+y chia hết cho 29

   Học tốt!

27 tháng 6 2015

Ta có :

2a + 124 = 5b

=> 20 + a + 124 = 50 + b

=> 144 + a = 50 + b

=> a - b = 144 - 55

=> a - b = 89

Mà a - b lớn nhất là 9 - 0 = 9 < 89

 => a,b không tồn tại.

           Vậy không tìm được chữ số a,b thỏa mãn đề bài.

27 tháng 6 2015

các bạn **** tớ đi trả lời đầu tiên mà

13 tháng 10 2019

Ta có : 

\(2a=\frac{a}{\frac{1}{2}};3b=\frac{b}{\frac{1}{3}};5b=\frac{b}{\frac{1}{5}};7c=\frac{c}{\frac{1}{7}}\)

Lại có \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}\\\frac{b}{\frac{1}{5}}=\frac{c}{\frac{1}{7}}\end{cases}}\Rightarrow\frac{a}{\frac{3}{2}}=b=\frac{c}{\frac{5}{7}}\Leftrightarrow\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{3a}{\frac{9}{2}}=\frac{7b}{1}=\frac{5c}{\frac{25}{7}}=\frac{3a-7b+5c}{\frac{9}{2}-1+\frac{25}{7}}=\frac{-30}{\frac{99}{14}}=\frac{-140}{33}\)

\(\Rightarrow\hept{\begin{cases}3a=\frac{-140}{33}\cdot\frac{9}{2}=\frac{-210}{11}\Rightarrow a=\frac{-70}{11}\\7b=\frac{-140}{33}\Rightarrow b=\frac{-20}{33}\\5c=\frac{-140}{33}\cdot\frac{25}{7}=\frac{-500}{33}\Rightarrow c=\frac{-100}{33}\end{cases}}\)

Vậy....

Chắc sai =))

10 tháng 8 2021

giúp

10 tháng 8 2021

giúp mình

 

NV
3 tháng 8 2021

a.

Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)

Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn

Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;3\right)\)

b.

\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn

Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn

c.

\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)

Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn

Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;4\right)\)

6 tháng 5 2015

Áp dụng dãy tỉ số bằng nhau => \(\frac{2a}{5b}=\frac{5b}{6c}=\frac{6c}{7d}=\frac{7d}{2a}=\frac{2a+5b+6c+7d}{5b+6c+7d+2a}=1\)

=> \(B=1+1+1+1=4\)

5 tháng 5 2015

Các bạn giúp ,mình gâp nhé

Các bạn ghi cả lời  giải cho mình nhé

8 tháng 10 2021

ta có \(\left(2.a+7\right)⋮\left(2.a+1\right)\)

   \(\Rightarrow\left(2.a+1+6\right)⋮\left(2.a+1\right)\)

do \(\left(2.a+1\right)⋮\left(2.a+1\right)\)nên \(6⋮\left(2.a+1\right)\)

\(\Rightarrow\left(2.a+1\right)\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)

rồi bạn kẻ bảng là xong