K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

ta có : p,p+k,p+2k là các số nguyên tố > 3

\(\Rightarrow\)p,p+k,p+2k là số lẻ

p+2k-p+k=k chia hết cho 2

suy ra k chia hết cho 2 (1)

ta có p,p+k,p+2k là các số nguyên tố >3

suy ra p,p+k,p+2k chia 3 dư 1 hoặc 2

nếu p,p+k chia 3 cùng dư1 hoặc 2

suy ra p+k-p=k chia hết cho 3

suy ra k chia hết cho 3

nếu p,p+2k chia 3 cùng dư 1 hoặc 2

p+2k-p=2k chia hết cho 3 mà (3,2)=1

suy ra k chia hết cho 3

nếu p+k và p+2k chia 3 cùng dư 1 hoặc 2

suy ra p+2k-p+k=k chia hết cho 3

suy ra k chia hết cho 3 trong mọi trường hợp  (2)

 từ (1) và (2)

suy ra k chia hết cho 2,3 mà (3,2)=1

suy ra k chia hết cho 6

13 tháng 4 2015

Khó quá Doraemon ơi ...

5 tháng 4 2017

Xét trong phép chia cho 2 và cho 3 bạn ạ :)) 

25 tháng 9 2021

thiếu dữ liệu ko tính đc vd a = 12 k = 6 thì vẫn chia hết 
1 đề bài sai 
2 thiếu dữ kiện

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)

$$ k chia hết cho 6 (đpcm).

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn ﴾tức là k chia hết cho 2﴿

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

﴾vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2﴿.

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6

4 tháng 4 2017

CMR: nếu 3 số tự nhiên m, m+k ,m+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6

8 tháng 4 2015

Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn => k chia hết cho 2

m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2

+ Nêu m = 3p + 1: 

xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại

xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại

=> k = 3a hay k chia hết cho 3

+ Nếu m = 3p + 2 

xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại

xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại

=> k = 3a

Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)

3 tháng 1 2016

Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn

=> k chia hết cho 2

m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2

+ Nêu m = 3p + 1:

xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại

xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại

=> k = 3a hay k chia hết cho 3

+ Nếu m = 3p + 2

xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại

xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại

=> k = 3a

Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm) 

9 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2  không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $\Rightarrow$⇒ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3  k chia hết cho tích (2 . 3)

$\Rightarrow$⇒ k chia hết cho 6 (đpcm).

9 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)

$$ k chia hết cho 6 (đpcm).

24 tháng 7 2019

Toán lớp 5 chưa học số nguyên tố đâu em nhé!

Câu hỏi của Nguyễn Anh Kim Hân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

24 tháng 7 2019

do a; a + k; a + 2k là số nguyên > 3

=> a; a + k; a + 2k lẻ

=> 2a + k chẵn

=> k chia hết cho 2

mặt khác a là số nguyên

=> a có dạng 3p + 1 và 3p + 2 (p thuộc N*)

xét a = 3p + 1, ta có k dạng:

3m; 3m + 1; 3m + 2 (m thuộc N*)

+) với k = 3m + 1 ta có: 3p + 1 + 2(3m + 1) = 3(p + 1 + 3m) (loại vì a + 2k là hợp số)

+) với k = 3m + 2 ta có: a + k = 3(p + m + 1) (loại)

=> k = 3m

tương tự với 3p + 2:

=> k = 3m

=> k chia hết cho 3

mà (3; 2) = 1

=> k chia hết cho 6