cho tam giác ABC nhọn (AB<AC) tia phân giác của góc BAC cắt BC ở D trên tia AC lấy điểm E sao cho AE=AB
so sánh 2 góc DEC và ADB
so sánh BD và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a) Xét ∆ADE và ∆ADB ta có:
AE = AB (gt)
ˆDAE=ˆBAD���^=���^ (AD là tia phân giác của ˆBAC���^)
AD (cạnh chung)
Do đó ∆ADE = ∆ADB (c.g.c) ⇒ˆADE=ˆADB⇒���^=���^
Mà ˆDEC���^ là góc ngoài của tam giác ADE
Nên ˆDEC>ˆADE⇒ˆDEC>ˆADB.���^>���^⇒���^>���^.
b) Ta có ˆADB>ˆDCE(ˆADB���^>���^(���^ là góc ngoài của tam giác ACD)
Mà ˆDEC>ˆADB���^>���^ (câu a) ⇒ˆDEC>ˆDCE⇒���^>���^
∆CDE có ˆDEC>ˆDCE⇒���^>���^⇒ DC > ED (định lí cạnh đối diện với góc lớn hơn)
Mà ED = BD (∆ADE = ∆ADB). Do vậy DC>BD.