Tìm số nguyên n sao cho n^2+3chia hết cho n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)\)
\(\Rightarrow\)n + 1 \(\in\){ 1 ; 3 ; - 1 ; - 3 }
\(\Rightarrow x\in\){ 0 ; 2 ; -2 ; - 4 }
Vậy x \(\in\){ 0; 2 ; -2 ; -4 }
Vì 3 chia hết cho n + 1 => n + 1 thuộc Ư ( 3 )
Ư ( 3 ) = { 1 ; 3 }
TH1 : n + 1 = 1 TH2 : n + 1 = 3
n = 1 - 1 n = 3 - 1
n= 0 n = 2
Vậy n thuộc { 0 ; 2 }
a)\(3n+5⋮3n-1\Rightarrow6+3n-1⋮3n-1\)
Mà \(3n-1⋮3n-1\Rightarrow6⋮3n-1\)
\(\Rightarrow3n-1\inƯ\left(6\right)\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow3n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
\(\Rightarrow n\in\left\{\frac{-5}{3};\frac{-2}{3};\frac{-1}{3};0;\frac{2}{3};1;\frac{4}{3};\frac{7}{3}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
b)\(2n+3⋮2n-1\Rightarrow4+2n-1⋮2n-1\)
Mà \(2n-1⋮2n-1\Rightarrow4⋮2n-1\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
\(\Rightarrow n\in\left\{\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Hok Tốt!
Suy ra : n(n+1)-(n+1)+6 chia het cho n-1
Suy ra: 6 chia het cho n-1
Suy ra: n =-7;-4-3;-2;0;1;2;5
Ta có:
n2 +3= n2 -1+4
= n2 -n+n-1+4
= (n2-n)+(n-1)+4
= n(n-1)+(n-1)+4
=(n-1)(n+1)+4
Mà n2+3 chia hết cho n-1
(n-1)(n+1) chia hết cho n-1
Suy ra 4 chia hết cho n-1
n-1 là Ư(4)={-1,1,-2,2,-4,4)
Nếu n-1=-1
n=0
Tương tự ta cũng có: n=2;n=-1;n=3;n=-3;n=5