Có 15 quyển sách trong đó có 7 quyển sách Toán,5 quyển sách Văn và 3 quyển sách Lý.Tính xác suất để lấy được:
a) Hai quyển sách Toán.
b) Hai quyển sách trong đó có 1 quyển Văn và 1 quyển L ý.
c) Hai quyển sách trong đó có ít nhất 1 quyển Văn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật
Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5!.2! = 240 cách.
Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_
Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3 cách.
Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.
Vậy xác suất cần tính là P = 240 . A 4 3 . 3 10 ! = 1 210 .
Đáp án A
Phương pháp giải: Áp dụng các quy tắc đếm cơ bản trong bài toán sắp xếp đồ vật
Lời giải: Xếp 5 quyển Toán (coi Toán T1 và Toán T2 là một) có 5 ! .2 ! = 240 cách.
Khi đó, sẽ tạo ra 4 khoảng trống kí hiệu như sau: _T_T_T_T_T_
Xếp 3 quyển sách Tiếng Anh vào 4 khoảng trống giữa hai quyển toán có A 4 3 cách.
Xếp 1 quyển sách Văn vào 3 vị trí còn lại có 3 cách.
Vậy xác suất cần tính là P = 240. A 4 3 .3 10 ! = 1 210 .
HD: Xếp 10 quyển sách tham khảo thành một hàng ngang trên giá sách có : 10! cách sắp xếp.
Sắp xếp 2 cuốn toán 1 và toán 2 cạnh nhau có 2! cách,
Sắp xếp 6 cuốn sách Toán sao cho có hai quyển Toán T1 và Toàn T2 cạnh nhau có 2!.5! cách.
Khi đó có 4 vị trí để sắp xếp 3 cuốn Anh ở giữa hai quyển Toán và 3 cách sắp xếp cuốn Tiếng Anh.
Không gian mẫu: \(10!\)
a. Xếp hai cuốn văn và toán ở 2 đầu: có \(5.5.2!\) cách
Xếp 8 cuốn còn lại vào giữa hai cuốn vừa xếp: \(8!\) cách
Xác suất: \(P=\dfrac{5.5.2!.8!}{10!}=\dfrac{5}{9}\)
b. Xếp 5 cuốn sách văn: \(5!\) cách
5 cuốn sách văn tạo thành 6 ô trống, xếp 5 cuốn sách toán vào 6 ô trống: \(A_6^5\) cách
Tổng cộng: \(5!.A_6^5\) cách
Xác suất: \(P=\dfrac{5!.A_6^5}{10!}=\dfrac{1}{42}\)
Chọn D
Tổng có 3 + 4 + 5 = 12 quyển sách được sắp xếp lên một giá sách có 3 ngăn (có 2 vách ngăn). Vì vậy, ta coi 2 vách ngăn này như 2 quyển sách giống nhau. Vậy số phần tử không gian mẫu
Gọi A là biến cố : “ Sắp xếp các 12 quyển sách lên giá sao cho không có bất kỳ hai quyển sách toán nào đứng cạnh nhau”.
+) Xếp 9 quyển sách ( lý và hóa) cùng 2 vách ngăn có 11 ! 2 ! cách
+) Lúc này, có 12 “khoảng trống” ( do 9 quyển sách ( lý và hóa) cùng 2 vách ngăn tạo ra) để xếp 3 quyển sách toán vào sao cho mỗi quyển vào một “khoảng trống” có A 12 3 cách.
Vậy có tất cả 11 ! 2 ! . A 12 3 cách. Suy ra
Vậy xác suất để không có bất kỳ hai quyển sách toán nào đứng cạnh nhau là:
Chọn D
Giá có 3 ngăn như vậy có 2 vách ngăn, coi 2 vách ngăn này là 2 quyển sách giống nhau. Khi đó
bài toán trở thành xếp 14 quyển sách (2 quyển “VÁCH NGĂN” giống nhau) vào 14 vị trí. Đầu
tiên chọn 2 vị trị trí xếp vách ngăn là C 14 2 , 12 vị trí còn lại xếp 12 quyển sách là 12!. Vậy không gian mẫu là C 14 2 .12!.
Gọi A là biến cố “không có bất kì hai quyển sách toán nào đứng cạnh nhau”. Ta tìm số cách xếp thỏa mãn A
Đầu tiên ta xếp 11 quyển sách gồm 4 quyển lí, 5 quyển hóa và 2 quyển “VÁCH NGĂN”. Cũng
như trên, ta chọn 2 vị trí xếp 2 quyển “VÁCH NGĂN” trước là C 11 2 sau đó xếp 9 quyển còn lại là 9!. Vậy số cách xếp 11 quyển này là C 11 2 .9!. Sau khi xếp xong 11 quyển này thì sẽ có sẽ có 12 khe. Ta chọn 3 khe để xếp 3 quyển toán còn lại, là A 12 3 .
Vậy số cách thỏa mãn biến cố A là . C 11 2 .9!. A 12 3
Vậy .
a, Hai quyển sách toán: 7/15 x 7/15
b, Hai quyển sách có 1 văn và 1 lý: 5/15 x 3/15 = 1/3 x 1/5= 1/15
c, Hai quyển sách ít nhất 1 quyển văn: 5/15 x 10/15 + 5/15 x 5/15