K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2023

Xét hai tam giác vuông BHA và BAC có:

\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BHA\sim\Delta BAC\left(g.g\right)\)

Xét ΔBHA và ΔBAC có:

\(\widehat{ABC}chung\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)

⇒ ΔBHA ∾ ΔBAC ( g.g )

loading...

 

15 tháng 3 2022

freqché tonery élooin shçç 

arzàyu radio rubsz tqsd

çàèé sonuhy,lafneq toin

çàea & reszao and shoppea

reach 123 tusqi yuoyuè 

                               (reachèst)

a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có

BH chung

HA=HE

=>ΔBHA=ΔBHE

b: Xét ΔBAD có

AH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại A

c: Xét tứ giác ABED có

H là trung điểm chung của AE và BD

=>ABED là hình bình hành

=>DE//AB

=>DE vuông góc AC

Xét ΔCAE có

ED,CH là đường cao

ED cắt CH tại D

=>D là trực tâm

a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có

BH chung

góc ABH=góc EBH

=>ΔBHA=ΔBHE

b: Xét ΔBAK và ΔBEK có

BA=BE

góc ABK=góc EBK

BK chung

=>ΔBAK=ΔBEK

=>góc BEK=90 độ

=>EK vuông góc BC

c: AK=KE

KE<KC

=>AK<KC

16 tháng 8 2021

a) Xét tam giác BHA và BHE có:

BD chung

ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)

ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)

Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác củaˆBB^)

⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)

⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)

ED vuông góc với B tại E

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đpcm)

16 tháng 8 2021

a) Vì EH ⊥ BC ( gt )

=> ΔBHE vuông tại H

Xét tam giác vuông BAE và tam giác vuông BHE có :

BE chung

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )

b) Gọi I là giao điểm của AH và BE

Xét ΔABI và ΔHBI có :

BA = BH (ΔBAE = ΔBHE (cmt)

∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )

BI chung

=> ΔABI = ΔHBI ( c.g.c )

=> ∠AIB = ∠AIH ( 2 góc tương ứng )

Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )

=> ∠AIB = ∠AIH = 900

=> BI ⊥ AH (1)

Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )

Mà I nằm giữa hai điểm A và H (2)

=> I là trung điểm của AH ( 3)

Từ (1) (2) (3) => BI là trung trực của AH

Hay BE là trung trực của AH

c) Xét ΔKAE và ΔCHE có:

∠KAE = ∠CHE ( = 900 )

AE = HE ( ΔBAE = ΔBHE (cmt)

∠AEK = ∠HEC ( 2 góc đối đỉnh )

=> ΔKAE = ΔCHE ( g.c.g )

=> EK = EC ( 2 cạnh tương ứng )

b: BE>BC+CE

=BC+1/2CH

=BC+1/2*1/2(HB+HC)

=BC+1/4(HB+HC)>BC+1/4BC

=>BE>5/4BC>3/BC