Câu 4 (3 điểm): Cho ΔABC vuông tại A có đường cao AH (H ∊ BC)
a. Chứng minh ΔBHA ∾ ΔBAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
freqché tonery élooin shçç
arzàyu radio rubsz tqsd
çàèé sonuhy,lafneq toin
çàea & reszao and shoppea
reach 123 tusqi yuoyuè
(reachèst)
a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
HA=HE
=>ΔBHA=ΔBHE
b: Xét ΔBAD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại A
c: Xét tứ giác ABED có
H là trung điểm chung của AE và BD
=>ABED là hình bình hành
=>DE//AB
=>DE vuông góc AC
Xét ΔCAE có
ED,CH là đường cao
ED cắt CH tại D
=>D là trực tâm
a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
góc ABH=góc EBH
=>ΔBHA=ΔBHE
b: Xét ΔBAK và ΔBEK có
BA=BE
góc ABK=góc EBK
BK chung
=>ΔBAK=ΔBEK
=>góc BEK=90 độ
=>EK vuông góc BC
c: AK=KE
KE<KC
=>AK<KC
a) Xét tam giác BHA và BHE có:
BD chung
ˆABD^=ˆEBD^(vì BD là phân giác ˆBB^)
ˆBHA^=ˆBHE^(vì AH vuông góc với Bd tại H)
⇒Tam giác BHA=tam giac BHE(c.g.v-g.n.k)
b) Xét Tam giác BDA và tam giác BDE có
BD chung
BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))
ABD=EBD( vì BD là phân giác củaˆBB^)
⇒⇒Tam giác BDA = Tam giác BDE(c.g.c)
⇒⇒ˆBEA^=ˆA^= 90o(2 canh tương ứng và ˆA^= 90o)
ED vuông góc với B tại E
c, AD = DE
DE < CD do tam giác CDE vuông tại E
=> AD < DC
d, DA= DE do tam giác ABD = tam giác EBD (Câu b)
=> tam giác DAE cân tại D (đn)
=> ^DAE = ^DEA (tc) (1)
có : AK _|_ BC (gt) ; DE _|_ BC (câu b)
=> DE // AK
=> ^DEA = ^EAK (slt) và (1)
=> ^DAE = ^EAK mà AE nằm giữa AD và AK
=> AE là phân giác của ^CAK (đpcm)
a) Vì EH ⊥ BC ( gt )
=> ΔBHE vuông tại H
Xét tam giác vuông BAE và tam giác vuông BHE có :
BE chung
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
=> ΔBAE = ΔBHE ( cạnh huyền - góc nhọn )
b) Gọi I là giao điểm của AH và BE
Xét ΔABI và ΔHBI có :
BA = BH (ΔBAE = ΔBHE (cmt)
∠B1 = ∠B2 ( BE là tia phân giác của ∠BAC )
BI chung
=> ΔABI = ΔHBI ( c.g.c )
=> ∠AIB = ∠AIH ( 2 góc tương ứng )
Mà ∠AIB + ∠AIH = 1800 ( 2 góc kề bù )
=> ∠AIB = ∠AIH = 900
=> BI ⊥ AH (1)
Ta có: IA = IH ( ΔABI = ΔHBI ( cmt )
Mà I nằm giữa hai điểm A và H (2)
=> I là trung điểm của AH ( 3)
Từ (1) (2) (3) => BI là trung trực của AH
Hay BE là trung trực của AH
c) Xét ΔKAE và ΔCHE có:
∠KAE = ∠CHE ( = 900 )
AE = HE ( ΔBAE = ΔBHE (cmt)
∠AEK = ∠HEC ( 2 góc đối đỉnh )
=> ΔKAE = ΔCHE ( g.c.g )
=> EK = EC ( 2 cạnh tương ứng )
b: BE>BC+CE
=BC+1/2CH
=BC+1/2*1/2(HB+HC)
=BC+1/4(HB+HC)>BC+1/4BC
=>BE>5/4BC>3/BC
Xét hai tam giác vuông BHA và BAC có:
\(\left\{{}\begin{matrix}\widehat{B}\text{ chung}\\\widehat{BHA}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BHA\sim\Delta BAC\left(g.g\right)\)
Xét ΔBHA và ΔBAC có:
\(\widehat{ABC}chung\)
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
⇒ ΔBHA ∾ ΔBAC ( g.g )