cho △ABC có AB=4,8cm; BC3,6cm và AC=6,4cm. Trên cạnh AB lây điểm D sao cho AD=3,2cm và trên cạnh AC lấy điểm E sao cho AE2,4cm
a) C/m △AED ∼ △ABC
b) Tính DE
c) C/m góc ABC+góc DEC=180độ
d) F là giao điểm của ED và CB. C/m △FBD ∼ △FCE . Tính tỉ số đồng dạng
e) Tính FD,FB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tự vẽ hình nha:3
Ta có: BC\(^2\) = 6\(^2\) = 36(1)
AB\(\)\(^2\) + AC\(^2\) = 3,6\(^2\) +\(4,8^2=36\) (2)
Từ (1) và (2) ⇒ \(BC^2=AB^2+AC^2\)
⇒ △ABC là tam giác vuông (định lý Pytago đảo)
Áp dụng tỉ số lượng giác vào △ABC, ta có:
sin B = \(\dfrac{AC}{BC}\) = \(\dfrac{4,8}{6}\) = \(\dfrac{4}{5}\) ⇒ góc B = 53 độ
⇒ góc C = 90 độ - 53 độ = 37 độ.
Áp dụng hệ thức lượng vào △ABC ⊥ A, đường cao AH, ta có:
AH.BC = AB.AC ⇒ AH = \(\dfrac{AB.AC}{BC}\)=\(\dfrac{3,6.4,8}{6}\)= 2,88 cm.
Vậy...(bn tự kết luận nha^^)
Lời giải:
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4$ (cm)
Áp dụng hệ thức lượng trong tam giác vuông:
$BH.CH=AH^2$
$\Rightarrow BH=\frac{AH^2}{CH}=\frac{4,8^2}{6,4}=3,6$ (cm)
$BC=BH+CH=3,6+6,4=10$ (cm)
$AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-8^2}=6$ (cm) - Theo định lý Pitago
a.Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.AH: đã có
Áp dụng định lý pitago vào tam giác vuông AHC, có:
\(AC^2=AH^2+CH^2\)
\(\Rightarrow CH=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=\sqrt{40,96}=6,4cm\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
nên BC=10(cm)
b: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
nên HB=3,6(cm)
=>HC=BC-HB=6,4(cm)
câu này lúc nãy làm rồi em nhé! ( bổ sung BH )
Áp dụng định lý pitago vào tam giác vuông ABH, có:
\(AB^2=BH^2+AH^2\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6cm\)
Xét ΔAHB vuông tại H có
\(AH^2+HB^2=AB^2\)
hay AH=3,6(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\)
hay BC=7,5(cm)
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=4,5(cm)
a: Xét ΔAED và ΔABC có
AE/AB=AD/AC
góc A chung
=>ΔAED đồng dạng vơi ΔABC
b: ΔAED đồng dạng vơi ΔABC
=>DE/BC=AE/AB
=>DE/3,6=2,4/4,8=1/2
=>DE=1,8cm
c: ΔAED đồng dạng với ΔABC
=>góc AED+góc ABC
=>góc DEC+góc DBC=180 dộ
d: Xét ΔFBD và ΔFEC có
góc FBD=góc FEC
góc F chung
=>ΔFBD đồng dạng vơi ΔFEC