1.Một nhóm học sinh 6 nam và 9 nữ
a, Có bao nhiêu cách chọn 3 học sinh nam bất kì
b, có bao nhiêu cách chia 3 tổ mỗi tổ gồm 2 nam và 3 nữ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi số nhóm chia được là a (a thuộc N*)
Theo bài ra ta có:
18 chia hết cho a ; 24 chia hết cho a
=> a thuộc ƯC(18,24)
Ta có :
18= (1;2;3;6;9;18) ( ngoặc ( ở đây là ngoặc nhọn)
24 = (1;2;3;4;6;8;12;24)
=> ƯC(18,24) = ( 1;2;3;6)
Vậy có thể chia nhiều nhất thành 6 nhóm.
Khi đó, mỗi nhóm có:
Số bạn nam là:
18 : 6 = 3 (bạn)
Số bạn nữ là:
24 : 6 = 4 (bạn)
Bài 2:
Gỉai
Gọi a là số tổ dự định chia (a thuộcN)và a ít nhất
Theo bài ra ta có:
28 chia hết cho a;24 chia hết cho a
Do đó a là ƯC (28;24)
28=2mũ2.7
24=2mũ3.3
ƯCLN(28:24)=2mũ2=4
Suy ra ƯC(24:28)=Ư(4)=(1:2:4)
Vậy có 3 cách chia số nam và nữ vào các tổ đều nhau.
Chia cho lớp thành 4 tổ thì mỗi tổ có số học sinh ít nhất
Để số nam và nữ trong mỗi tổ là như nhau thì số nam và nữ trong mỗi tổ phải là ước chung của 24 và 18. Hai số này có 4 ước chung (1, 2, 3, 6). Vậy có 4 cách chia tổ: chia thành 1, 2, 3 hoặc 6 tổ
chọn đc 5 em học sinh có đúng 2 nữ vậy sẽ có 3 nam
số cách chọn đc là:\(C^2_6.C^3_8\)
Lời giải:
Giả sử có $n$ số tổ chia được sao cho số nữ và số nam trong tổ là như nhau.
Khi đó $n$ là ước chung của $24,18$.
$\Rightarrow n\in\left\{1; 2; 3; 6\right\}$
$\Rightarrow$ có $4$ cách chia tổ
Để số học sinh mỗi tổ ít nhất thì $n$ phải nhiều nhất, tức là $n=6$
Vậy chia thành 6 nhóm thì số học sinh ở mỗi tổ là ít nhất.
Khi đó, mỗi tổ có: $18:6=3$ (hs nam) và $24:6=4$ (hs nữ)
Ta thực hiện các công đoạn sau:
Bước 1: Chọn 1 nam trong 7 nam làm tổ trưởng, có cách.
Bước 2: Chọn 1 nữ trong 6 nữ làm thủ quỹ, có cách.
Bước 3: Chọn 1 tổ phó trong 11 bạn còn lại (bỏ 2 bạn đã chọn ở bước 1 và bước 2), có cách.
Bước 4: Chọn 2 tổ viên trong 10 bạn còn lại (loại 3 bạn đã chọn ở trên), có cách.
Theo quy tắc nhân có cách chọn một tổ thỏa yêu cầu.
Chọn A
1: \(36=3^2\cdot2^2;32=2^5\)
=>\(ƯCLN\left(36;32\right)=2^2=4\)
Để có thể chia đều 36 nam và 32 nữ vào các tổ thì số tổ phải là ước chung của 36 và 32
=>Số tổ sẽ là ước của 4
mà Ư(4)={1;2;4}
và số tổ nhiều hơn 1
nên có 2 cách chia
Để số học sinh trong mỗi tổ là ít nhất thì số tổ là nhiều nhất
=>Số tổ nhiều nhất là 4 tổ
Khi đó, số học sinh mỗi tổ là: \(\dfrac{36+32}{4}=17\left(bạn\right)\)
ƯCLN(24;18)=6
=>ƯC(24;18)={1;2;3;6}
=>Có 4 cách
Để số học sinh của mỗi tổ là ít nhất thì số tổ là nhiều nhất
=>Số tổ là 6 tổ
Khi đó, mỗi tổ có 4 nữ và 3 nam
ƯCLN(24;18)=6
ƯC(24;18)={1;2;3;6}
Có 4 cách
Để số học sinh của mỗi tổ là ít nhất thì số tổ là nhiều nhất
vậySố tổ là 6 tổ
Khi đó, mỗi tổ có 4 nữ và 3 nam
Đáp án B
Phải chọn 2 học sinh nam và 4 học sinh nữ ⇒ Theo quy tắc nhân số cách chọn là C 6 2 C 9 4 (Cách).
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ