tinh
1-1/(x+20)=1005/2011
(luu y:/ la phan)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\frac{1}{3}-\frac{1}{x+2}=\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{3}-\frac{2010}{2011}\)
\(\frac{1}{x+2}=\frac{1}{2011}\)
\(\Rightarrow x+2=2011\)
\(x=2009\)
Đặt biểu thứ là A
2A=2/1.3+2/2.5+...+2/x.x+2
2A=1-1/3+1/3-1/5+.......+1/x-1/x+2
2A=1-1/x+2
4/5.x-x=1/3
=>x.(4/5-1)=1/3
=>x. ( -1/5)=1/3
=>x=1/3:(-1/5)
=>x= - 5/3
Học tốt !ĐứcTM NgôTM
\(\frac{4}{5x}=\frac{1}{3}\Rightarrow4.3=5x\)
\(\Rightarrow12=5x\)
\(\Rightarrow x=12:5\)
\(\Rightarrow x=\frac{12}{5}\)
Vậy \(x=\frac{12}{5}\)
Bài 1: 1998.1998 - 2000.1996
= 1998.1998 - 1998.1996 - 2.1996
= 2.1998 - 2.1996
= 2.2
= 4
Bài 2:
Bạn viết chưa có vế phải nên không tính được.
\(2M=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}\)
Lấy 2M-M theo từng vế ta được:
\(2M-M=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}-...-\frac{1}{2^{98}}\)\(-1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{99}}\)
\(M=2-\frac{1}{2^{99}}\)
Ko tính ra được kết quả cụ thể
\(S=\frac{2010^2}{2010x}+\frac{1}{2010y}-\frac{2010}{1005}\ge\frac{2011^2}{2010\left(x+y\right)}-\frac{2010}{1005}\)
\(\frac{2011^2}{2010.\frac{2011}{2012}}-\frac{2010}{1005}=\frac{2021056}{1005}\)
Đáp án:A 8,573:2,8 = 3,061
B Số Dư Của Phép Chia Trên Là: 0,22
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{x\times\left(x+2\right)}=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+.....+\frac{1}{x\times\left(x+2\right)}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow\frac{1}{2}\times\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:\frac{1}{2}=\frac{2010}{2011}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{2010}{2011}=\frac{1}{2011}\)
\(\Leftrightarrow x+2=2011\)
\(\Leftrightarrow x=2009\)
Vậy x = 2009
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)
\(\Rightarrow\frac{x+1}{x+2}=\frac{2010}{2011}\)
\(\Rightarrow x+1=2010\Leftrightarrow x=2009\)
Gọi \(A=\frac{1005}{2011}\)
A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)
A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)
A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2
A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2
A . 2=1/1-1/x+2
Suy gia:1005/2011 . 2=1/1-1/x+2
2010/2011 =1/1-1/x+2
1/x+2 =1/1-2010/2011
1/x+2 =1/2011
Suy gia:x+2=2011
x =2011-2
x =2009
\(1-\frac{1}{x+20}=\frac{1005}{2011}\)
\(\frac{1}{x+20}=1-\frac{1005}{2011}\)
\(\frac{1}{x+20}=\frac{1006}{2011}\)
=>1006.(x+20)=2011.1
=>1006x+20120=2011
1006x=2011-20120=-18109
x=\(\frac{-18109}{1006}\)
\(1-\frac{1}{\left(x+20\right)}=\frac{1005}{2011}\)
\(\Rightarrow\frac{1}{\left(x+20\right)}=1-\frac{1005}{2011}=\frac{1006}{2011}\)
\(\Rightarrow1:\left(x+20\right)=\frac{1006}{2011}\)
\(\Rightarrow x+20=\frac{2011}{1006}\)
\(\Rightarrow x=\frac{2011}{1006}-20=\frac{-18109}{1006}\)