Giải phương trình
\(\dfrac{x}{30}\)=\(\dfrac{x}{40}\)+\(\dfrac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow \frac{x+25}{75}+1+\frac{x+30}{70}+1=\frac{x+35}{65}+1+\frac{x+40}{60}+1$
$\Leftrightarrow \frac{x+100}{75}+\frac{x+100}{70}=\frac{x+100}{65}+\frac{x+100}{60}$
$\Leftrightarrow (x+100)(\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60})=0$
Dễ thấy $\frac{1}{75}+\frac{1}{70}-\frac{1}{65}-\frac{1}{60}<0$
$\Rightarrow x+100=0$
$\Leftrightarrow x=-100$ (tm)
\(ĐKXĐ:\left\{{}\begin{matrix}x\ne-1\\x\ne4\end{matrix}\right.\)
\(\dfrac{14x}{x+1}< \dfrac{9x-30}{x-4}\\ \Leftrightarrow14x\left(x-4\right)< \left(9x-30\right)\left(x+1\right)\\ \Leftrightarrow14x^2-56x< 9x^2-21x-30\\ \Leftrightarrow5x^2-35x+30< 0\\ \Leftrightarrow1< x< 6\)
a) \(5x - 30 = 0\)
\(5x = 0 + 30\)
\(5x = 30\)
\(x = 30:5\)
\(x = 6\)
Vậy phương trình có nghiệm \(x = 6\).
b) \(4 - 3x = 11\)
\( - 3x = 11 - 4\)
\( - 3x = 7\)
\(x = \left( { 7} \right):\left( { - 3} \right)\)
\(x = \dfrac{-7}{3}\)
Vậy phương trình có nghiệm \(x = \dfrac{7}{3}\).
c) \(3x + x + 20 = 0\)
\(4x + 20 = 0\)
\(4x = 0 - 20\)
\(4x = - 20\)
\(x = \left( { - 20} \right):4\)
\(x = - 5\)
Vậy phương trình có nghiệm \(x = - 5\).
d) \(\dfrac{1}{3}x + \dfrac{1}{2} = x + 2\)
\(\dfrac{1}{3}x - x = 2 - \dfrac{1}{2}\)
\(\dfrac{{ - 2}}{3}x = \dfrac{3}{2}\)
\(x = \dfrac{3}{2}:\left( {\dfrac{{ - 2}}{3}} \right)\)
\(x = \dfrac{{ - 9}}{4}\)
Vậy phương trình có nghiệm \(x = \dfrac{{ - 9}}{4}\).
xem lại câu b nha, tại vì trên là 7 dưới -7
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
\(\dfrac{100}{x}-\dfrac{100}{x+10}=\dfrac{30}{60}=0,5\left(ĐKXĐ:x\ne0;x\ne-10\right)\\ \Leftrightarrow\dfrac{100\left(x+10\right)-100x}{x\left(x+10\right)}=\dfrac{0,5x\left(x+10\right)}{x\left(x+10\right)}\\ \Leftrightarrow100x-100x+1000=0,5x^2+5x\\ \Leftrightarrow0,5x^2+5x-1000=0\\ \Leftrightarrow0,5x^2-20x+25x-1000=0\\ \Leftrightarrow0,5x.\left(x-40\right)+25.\left(x-40\right)=0\\ \Leftrightarrow\left(0,5x+25\right)\left(x-40\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}0,5x+25=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-50\\x=40\end{matrix}\right.\\ Vậy:S=\left\{-50;40\right\}\)
\(\dfrac{x-130}{20}\)+\(\dfrac{x-100}{25}\)+\(\dfrac{x-60}{30}\)+\(\dfrac{x-10}{35}\)=10
⇔\(\dfrac{2625\left(x-130\right)}{52500}\)+\(\dfrac{2100\left(x-100\right)}{52500}\)+\(\dfrac{1750\left(x-60\right)}{52500}\)+\(\dfrac{1500\left(x-10\right)}{52500}\)=\(\dfrac{525000}{52500}\)
⇔2625\(x\)-341250+2100\(x\)-210000+1750\(x\)-105000+1500\(x\)-15000=525000
⇔ 7975\(x\) = 1196250
⇔ \(x\) = \(\dfrac{1196250}{7975}\)
⇔\(x \) = 150
\(\Leftrightarrow\dfrac{16}{x+4}+\dfrac{16}{x-4}=\dfrac{5}{3}\)
=>\(\dfrac{16x-64+16x+64}{x^2-16}=\dfrac{5}{3}\)
=>5(x^2-16)=3*32x=96x
=>5x^2-96x-80=0
=>x=20 hoặc x=-4/5
nếu là giải PT bằng cách quy đồng:
25x2 + 480 - 400 = 0
làm sao để phan tích ra ạ.
ĐKXĐ : \(x\notin\left\{0;-1;-2;-3;-4\right\}\)
Ta có \(\dfrac{1}{x}+\dfrac{1}{x+1}+\dfrac{1}{x+2}+\dfrac{1}{x+3}+\dfrac{1}{x+4}=0\)
\(\Leftrightarrow\dfrac{2x+4}{x.\left(x+4\right)}+\dfrac{2x+4}{\left(x+1\right).\left(x+3\right)}+\dfrac{1}{x+2}=0\)
\(\Leftrightarrow\dfrac{2x+4}{\left(x+2\right)^2-4}+\dfrac{2x+4}{\left(x+2\right)^2-1}+\dfrac{1}{x+2}=0\) (*)
Đặt x + 2 = a \(\left(a\ne0\right)\)
(*) \(\Leftrightarrow\dfrac{2a}{a^2-4}+\dfrac{2a}{a^2-1}+\dfrac{1}{a}=0\)
\(\Leftrightarrow\dfrac{2}{a-\dfrac{4}{a}}+\dfrac{2}{a-\dfrac{1}{a}}+\dfrac{1}{a}=0\) (**)
Đặt \(\dfrac{1}{a}=b\left(b\ne0\right)\) \(\Rightarrow ab=1\)
Ta được (**) \(\Leftrightarrow\dfrac{2}{a-4b}+\dfrac{2}{a-b}+b=0\)
\(\Leftrightarrow\dfrac{2b}{1-4b^2}+\dfrac{2b}{1-b^2}+b=0\)
\(\Leftrightarrow\dfrac{2}{1-4b^2}+\dfrac{2}{1-b^2}=-1\)
\(\Rightarrow4-10b^2=-4b^4+5b^2-1\)
\(\Leftrightarrow4b^4-15b^2+5=0\) (***)
Đặt b2 = t > 0
Ta có (***) <=> \(4t^2-15t+5=0\Leftrightarrow t=\dfrac{15\pm\sqrt{145}}{8}\) (tm)
\(\Leftrightarrow b=\pm\sqrt{\dfrac{15\pm\sqrt{145}}{8}}\)
mà x + 2 = a ; ab = 1
nên \(x=\pm\sqrt{\dfrac{8}{15\pm\sqrt{145}}}-2\)
Thử lại ta có phương trình có 4 nghiệm như trên
=>x/30-x/40=3/4
=>x/120=3/4
=>x=90
\(\dfrac{x}{30}=\dfrac{x}{40}+\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{4x}{120}=\dfrac{3x}{120}+\dfrac{90}{120}\)
\(\Leftrightarrow4x=3x+90\)
\(\Leftrightarrow4x-3x-90=0\)
\(\Leftrightarrow x-90=0\)
\(\Leftrightarrow x=90\)
\(\text{Vậy phương trình có tập nghiệm là }S=\left\{90\right\}\)