K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Hình khỏi vẽ đi ha.

c/ Xét tam giác ABH và tam giác ACH có:

     góc BHA = góc CHA = 90 độ (gt)

    góc ABH = góc HAC (vì tam giác AHC đồng dạng tam giác BAC)

=> tam giác ABH đồng dạng tam giác ACH (g.g)

=> HA/HC = HB/HA

=> HA.HA = HB.HC

=> HA^2 = HB.HC

15 tháng 3 2016

Mình ghét hình...với lại nó dài nữa! Ai làm cũng mỏi tay bạn à...

15 tháng 3 2016

a)BD, CE vuông góc với AC,AB

=> H là trực tâm của tam giác ABC

=>AH là đường cao của tam giác ABC

=>AH vuông góc BC

b)ta có:góc EAC=gócDAB

              góc ADB=góc AEC=90độ

=>tam giác ABD đồng dạng với tam giác ACE

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>S AHB/S CHA=(AB/CA)^2=9/16

23 tháng 3 2018

c, Xét tam giác HAC và MBC có : 

\(\widehat{AHC}=\widehat{BMC}=90^O\)

Góc BCM chung 

=> tam giác HAC đồng dạng với MBC

23 tháng 3 2018

giúp mình nốt câu e đc k???

a: Xét ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: BC=căn 3^2+4^2=5cm

Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=5/7

=>DC=20/7cm

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA

=>BA^2=BH*BC

=>BA=6cm

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

1: Xet ΔACB và ΔHCA có

góc C chung

góc CAB=góc CHA

=>ΔACB đồng dạng vói ΔHCA

2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)

AH=9*12/15=108/15=7,2cm

HB=12^2/15=144/15=9,6cm

=>HC=15-9,6=5,4cm

3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)

4: Xét ΔHAB có HE/HA=HD/HB

nên ED//AB

=>DE vuông góc AC

Xét ΔCAD có

DE,AH là đường cao

DE cắt AH tại E

=>Elà trực tâm

=>CE vuông góc AD

24 tháng 3 2023

A B C H M

Xét \(\Delta ABC\&\Delta ABH\) ta có:

\(\widehat{A}=\widehat{B}=90^o\left(gt\right)\\ \widehat{B}=\widehat{B}\\\Rightarrow \Delta ABC\&\sim ABH\)

 

24 tháng 3 2023

loading...  

Xét ∆AHB và ∆CBA có:

∠AHB = ∠CAB = 90⁰

∠B chung

⇒ ∆AHB ∽ ∆CBA (g-g)