Tính giá trị của biểu thức sau:
C= (x+1)(x-1)(x2+x+1)(x2-x+1) với x=-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)
b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)
\(E=x^2+6x+11\)
\(=x^2+6x+9+2\)
\(=\left(x+3\right)^2+2>0\forall x\)
\(F=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
c) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x.1+1^2\right)\)
\(=\left(x-1\right)^3-\left(x-1\right)^3\)
\(=0\)
d) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)\left(x^2+x.3+3^2\right)+6\left(x+1\right)^2\)
\(=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)
\(=0+6\left(x+1\right)^2\)
\(=6\left(x+1\right)^2\)
Thực hiện khai triển hằng đẳng thức
A = ( x 3 – 1) + ( x 3 – 6 x 2 + 12x – 8) – 2( x 3 + 1) + 6( x 2 – 2x + 1).
Rút gọn A = -5 không phụ thuộc biến x.
\(C=\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(=\left[\left(x+1\right)\left(x^2-x+1\right)\right]\left[\left(x-1\right)\left(x^2+x+1\right)\right]\)
\(=\left(x^3+1\right)\left(x^3-1\right)\)
\(=\left(-3^3+1\right)\left(-3^3+1\right)\)
\(=728\)
Thay x = -3 vào rồi tính thôi!?