Cho x,y la 2 số thay đổi luôn thỏa mãn x>0; y<0; x+y=1
a) rút gọn: \(A=\frac{y-x}{xy}:\left(\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{x^2-y^2}+\frac{x^2}{y^2-x^2}\right)\)
b) CMR : A<-4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\) (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)
Thay x + y = 1 vào B ta có
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)
\(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)
A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)
Sorry mình không giúp đc bạn
có công cụ để ghi mà. bạn dùng cái đó nó dễ nhìn hơn. chứ thế này thì khó giải lắm
sao đa số mọi người toàn copy lên mạng hoặc vô câu hỏi tương tự vại
1 cách giải
+Nếu \(y\le0\) thì \(x\ge3-y\ge3\Rightarrow x^2\ge9\Rightarrow x^2+y^2>5\)
+Xét y > 0
\(x+y\ge3\Rightarrow y\ge3-x\Rightarrow y^2\ge\left(3-x\right)^2\)
\(x^2+y^2\ge x^2+\left(3-x\right)^2=2x^2-6x+9=2\left(x-2\right)^2+2x+1\)
\(\ge0+2.2+1=5\)
Dấu "=" xảy ra khi \(x=2;\text{ }y=1\)