Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = AB. a) Chứng minh tam giác ABD = tam giác EBD. b) Tia ED cắt BA tại M. Chứng minh EC = AM. c) Chứng minh AE // MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)
đố các bạn
bé kia chăn vịt khác thường
buộc đi cho được chẵn hàng mới ưa
hàng 2 xếp thấy chưa vừa,
hàng 3 xếp vẫn còn thừa 1 con,
hàng 4 xếp vẫn chưa tròn,
hàng 5 xếp thiếu 1 con mới đầy
xếp thành hàng 7, đẹp thay!
vịt bao nhiêu ? tính được ngay mới tài !
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a) Xét: tam giác ABD và tam giác EBD có:
.AB= BE (giả thiết)
.góc B1= góc B2 (giả thiết)
.BD cạnh chung
suy ra: tam giác ABD= tam giác EBD (c-g-c)
b) Xét: tam giác ADM vuông tại A và tam giác CDE vuông tại E có:
.MD=ME ( giả thiết)
.góc D1= gócD2 (đối đỉnh)
suy ra: tam giác ADM= tam giác EBD ( cạnh huyền- góc nhọn)
Ta có : tam giác ADM= tam giác EBD (cmt)
suy ra:EC= AM (2 cạnh tương ứng)
c) Xét: tam giác AEC vuông tại A và tam giác EAM vuông tại E có:
.AE=EM (giả thiết)
. góc C= góc M (giả thiết)
suy ra : tam giác AEC= tam giác EAM (c-h-g-n)
Ta có: tam giác AEC= tam giác EAM (cmt)
suy ra: góc AEC = góc EAM( 2 góc tương ứng)
a, xét tam giác ABD và tam giác EBD có: BD chung
góc ABD = góc EBD do BD là pg của góc ABC (gt)
AB = BE (gt)
=> tam giác ABD = tam giác EBD (c-g-c)
b, tam giác ABD = tam giác EBD (câu a)
=> góc DAB = góc DEB (đn)
mà góc DAB = 90
=> góc DEB = 90
tam giác ABD = tam giác EBD => DA = DE
xét tam giác MDA và tam giác CDE có : góc DAM = góc DEC = 90
goc MDA = góc CDE (đối đỉnh)
=> tam giác MDA = tam giác CDE (cgv-gnk)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=góc BAD=90 độ
=>DE vuông góc BC
b: Xét ΔDAM vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADM=góc EDC
=>ΔDAM=ΔDEC
=>AM=EC
c: Xét ΔAEC và ΔEAM có
AE chung
EC=AM
AC=EM
=>ΔAEC=ΔEAM
*Hình quên đánh dấu ABD = DBE nhé
*Cần viết gt và kl thì bảo mình nhá <3
Giải
a) Xét ∆ABD và ∆EBD có :
AB = BE (gt) |
FBD = DBE (AD là tia phân giác ABE) }
BD là cạnh chung |
=> ∆ABD = ∆EBD (c.g.c)
A)Xét tam giác ABD và EBD
DB chung
\(\widehat{EBD}=\widehat{DBA}\)
AB=AE
=> tam giác ABD = tam giác EBD
B)DE=AD
DE\(⊥\)BC
Xét tam giác vuông DEC và DAM
\(\widehat{CDE}=\widehat{MDA}\)
AD=DE
=> tam giác ADM = tam giác EDC => CE =AM
C) MÌNH KO BIẾT
hfthfthj