Cho 3 điểm A(-1;2), B(0;4), C(3;2). a) Tính tọa độ AB , AC, BC và diện tích tam giác ABC. b) Tính tọa độ trung điểm I của cạnh AB, trọng tâm G tam giác ABC. c) viết pt tổng quát và tham số của cạnh AB, BC, AC. d) Viết pt tổng quát và tham số của đường thẳng d qua A và song song BC. e) Viết pt đường tròn có tâm B và qua A. f) Viết pt tiếp tuyến của đường tròn (C) vừa tìm được biết tiếp tuyến vuông góc BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi (Q) và (R) theo thứ tự là mặt phẳng trung trực của AB và BC.
Những điểm cách đều ba điểm A, B, C là giao tuyến ∆ = (Q) ∩ (R).
(Q) đi qua trung điểm E(3/2; 1/2; 1) của AB và có n Q → = AB→ (1; -3; 0) do đó phương trình của (Q) là: x - 3/2 - 3(y - 1/2) = 0 hay x - 3y = 0
(R) đi qua trung điểm F(1; 1; 1) của BC và có n R → = BC → = (-2; 4; 0) do đó phương trình (R) là: x - 2y + 1 = 0
Ta có: n Q → ∧ n R → = (0; 0; -2).
Lấy D(-3; -1; 0) thuộc (Q) ∩ (R)
Suy ra ∆ là đường thẳng đi qua D và có vectơ chỉ phương u → (0; 0; 1)
nên có phương trình là:
a: vecto AB=(1;2)
vecto BC=(3;-2)
vecto AC=(4;0)
b: Tọa độ I là:
x=(-1+0)/2=-1/2 và y=(2+4)/2=3
Tọa độ G là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+0+3}{3}=\dfrac{2}{3}\\y=\dfrac{2+4+2}{3}=\dfrac{8}{3}\end{matrix}\right.\)
c: vecto AB=(1;2); vecto BC=(3;-2); vecto AC=(4;0)
A(-1;2); B(0;4); C(3;2)
PTTS của AB là:
x=-1+t và y=2+2t
PTTS của AC là:
x=-1+4t và y=2+0t=2
PTTS của BC là;
x=3+4t và y=2+0t=2
vecto AB=(1;2)
=>VTPT là (-2;1)
PTTQ của AB là:
-2(x+1)+1(y-2)=0
=>-2x-2+y-2=0
=>-2x+y-4=0
vecto AC=(4;0)
=>VTPT là (0;-4)
Phương trình AC là:
0(x-3)+(-4)(y-2)=0
=>y=2