K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Chọn A

b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)

nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)

hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)

ΔA'B'C' đồng dạng với ΔABC

=>A'B'/AB=B'C'/BC=A'C'/AC=k và góc A'=góc A; góc B=góc B'; góc C'=góc C

=>góc BAE=góc B'A'E'
Xét ΔABE và ΔA'B'E' có

góc B=góc B'

góc BAE=góc B'A'E'

=>ΔABE đồng dạng với ΔA'B'E'

=>AE/A'E'=AB/A'B'

=>A'E'/AE=A'B'/AB=k

30 tháng 11 2019

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Dựng ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3

Trên AB lấy D, trên AC lấy E sao cho Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Khi đó theo định lý Ta-let đảo ta suy ra DE // BC

⇒ ΔADE Giải bài 25 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số 2/3.

+ Dựng ΔA’B’C’ = ΔADE

Vẽ đoạn A’B’ = AD.

Dựng góc Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.

Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)

Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:

Giải bài 26 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

a: Ta có: ΔA'B'C'∼ΔABC

nên A'B'/AB=B'C'/BC=A'C'/AC

=>A'B'/6=B'C'/12=A'C'/8=3/2

=>A'B'=9cm; B'C'=18cm; A'C'=12cm

b: Ta có: ΔA'B'C'∼ΔABC

nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)

16 tháng 4 2019

Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên  A B A ' B ' = A C A ' C ' = B C B ' C ' = k

Suy ra  A ' B ' A B = A ' C ' A C = B ' C ' B C = 1 k

Áp dụng tính chất dãy tỉ số bằng nhau ta có

A ' B ' A B = A ' C ' A C = B ' C ' B C = A ' B ' + A ' C ' + B ' C ' A B + A C + B C = 1 k

Vậy tỉ số chu vi của tam giác A’B’C’ và ABC là  1 k

Đáp án: B

Chọn B

14 tháng 9 2023

Bước 1: Vẽ tam giác \(ABC\) bất kì.

Bước 2: Gọi \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AC\).

Khi đó ta có \(\Delta AMN\backsim\Delta ABC\) theo tỉ số \(k = \frac{1}{2}\).

Chứng minh:

Vì \(M\) là trung điểm của \(AB\), \(N\) là trung điểm của \(AC\) nên \(MN\) là đường trung bình của tam giác \(ABC\)\( \Rightarrow \left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right.\).

Ta có \(MN//BC\) và \(M,N\) cắt \(AB,AC\) tại \(M,N\) nên \(\Delta AMN\backsim\Delta ABC\) (định lí).

Khi đó, \(\frac{{MN}}{{BC}} = \frac{1}{2}\)