K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

a, A= 3 + 32 + 33 + ... + 32015

  3A= 32 + 33 +34 + ... + 32016

 =) 3A-A = ( 32 + 33 +34 + ... + 32016 ) - ( 3 + 32 + 33 + ... + 32015 )

 =) 2A = 32016-3

 =)   A =  32016-3 :2

 thay vào ta đc : 

  2.32016-3 :2 + 3 =27n

  32016 -3 +3 = 27n

 =) 32016=33n

 =) 2016 = 3n

 =) n = 672

b, A= 3 + 32 + 33 + ... + 32015

      = 3.(1+3+32+...+32014)

     ta thấy 1+3+32+...+32014 ko chia hết cho 3

     =) A chia hết cho 3 nhưng ko chia hết cho 32

    =) A ko phải là số chính phương

27 tháng 7 2023

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

26 tháng 4 2015

câu 1: số đó là :87

28 tháng 4 2015

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

 

26 tháng 9 2016

1.

a, Các số tự nhiên có tận cùng là 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

=> Các số chính phương sẽ có tận cùng là: 0, 1, 4, 9, 6, 5

=> Các số chính phương k thể có tận cùng là 2, 3, 7, 9

b, 

3. 5. 7. 9. 11+ 3= (...5)+ (...3)

                           = (....8)

3.5.7.9.11+3 có tận cùng là 8 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 3.5.7.9.11+3 k pải là số chính phương

2.3.4.5.6 -3= (....0)- (....3)

                    = (....7)

2.3.4.5.6 -3 có tận cùng là 7 mà số chính phương luôn có tận cùng là 0, 1, 4, 9, 6, 5 => 2.3 .4 .5 .6 -3 k pải là số chính phương.

 

26 tháng 9 2016

2.

a, 2n= 16                           b, 4n= 64                             c, 15n= 225

Mà 16= 24                            Mà 64= 43                            Mà 225= 152

=> 2n= 24                               => 4n= 43                            => 15n= 152

=> n=4                                  => n= 3                                    => n=2

3,

x50= x

=> x=1

15 tháng 1 2016

2a)

ta co: A=3^0+3^1+3^2+...........+3^2009

=>2A=3^1+3^2+3^3+...........+3^2010

=>2A=3^2010-3^0=3^2012-1

=>2A<3^2010

30 tháng 12 2016

ta có A = 3+3^2+......+ 3^2016

=> 3A = 3^2 + 3^3 +....+ 3^2017

=> 3A -A = (3^2 + 3^3 +...+ 3^2017)- ( 3+3^2+...+ 3^2016)

=> 2A = 3^ 2017 - 3

=> A = \(\frac{3^{2017}-3}{2}\) 

10 tháng 3 2017

Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}\)đều chia hết cho \(3\)\(\Rightarrow A⋮3\)

Nhưng chỉ có \(3\)không chia hết cho \(3^2\)\(\Rightarrow A\)không chia hết cho \(3^2\)

Ta có: \(A\)chia hết cho 3 nhưng không chia hết cho \(3^2\)

nên \(A\)không phải là số chính phương