ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc HDA=góc EDC
=>ΔDHA=ΔDEC
=>DH=DE
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔCIA có
CH,AE là đường cao
CH cắt AE tại D
=>D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b: ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d: Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a)
Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó: ΔAHB=ΔAHD
b)
ΔAHB=ΔAHD
=>AB=AD
Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
c)
Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
Do đó; ΔDHA=ΔDEC
=>DE=DH=HB
d)
Xét ΔCIA có
AE,CH là đường cao
AE cắt CH tại D
Do đó: D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
hình tự kẻ nghen:333
a) Xét tam giác AHB và tam giác AHD có
AH chung
AHB=AHD(=90 độ)
HB=HC(gt)
=> tam giác AHB=tam giác AHD( cgc)
b) vì tam giác BAH vuông tại H=> ABH+BAH= 90 độ
vì tam giác ABC vuông tại A=> ABC+BCA=90 độ
=> BAH=BAC(= 90 độ-ABC)
a,xét tam giác AHB và tam giác AHD
có góc bằng nhau
canh bằng nhau\suy ra hai tam giácbằng nhau
suy ra ^bah=^DAH
mà BAH=30 độ(ABH=60 độ xét tam giác AHB vuông suy ra BAH=30 độ)
suy ra ^BAD=60 độ(1)
lại có BA=AD
suy ra tam giấcBDA cân (2) từ 1 vf 2 suy ra ABD dều
b,TA có ^DAC+^DAB=9o độ
suy ra DAC=30 độ
suy ra tam giác DAC cân
suy ra AD = DC
xét tam giác ADH và tam giác CDE
có AD=DC
ADH=CDE
suy ra 2 tam giác bằng nhau
suy ra AH = CE
tích đung cho mik nha
cảm ơn nha
còn bài nào thì cứ đăng lên
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều