K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2023

`M= 1+2+2^2+2^3+...+2^99.`

`=> 2M = M= 2+2^2+2^3+...+2^99 + 2^100`

`=> M = 2M-M = 2+2^2+2^3+...+2^99 + 2^100 - (1+2+2^2+2^3+...+2^99)`

`<=> M = 2^100-1 <2^100`

Vậy `...`

30 tháng 3 2023

=> 2M = M= 2+2^2+2^3+...+2^99 + 2^100

=> M = 2M-M = 2+2^2+2^3+...+2^99 + 2^100 - (1+2+2^2+2^3+...+2^99)

<=> M = 2^100-1 <2^100

<=>Vậy M<2^100

16 tháng 4 2017

Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)

\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)

Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)

\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)

\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)

Vậy A<2

21 tháng 11 2020

\(M=1^1+2^2+2^3+...+99^{99}+100^{100}\)

do đó \(100^{100}< M< 100^1+100^2+100^3+...+100^{99}+100^{100}\)

Nên 100.....0 (200 chữ số 0)< M< 10101....0100(201 chữ số)

Ta có M là số có 201 chữ số và 2 chữ số đầu tiên của M là 1,0 nên tổng là 1

1 tháng 1 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)

Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(B=2B-B=2-\frac{1}{2^{99}}\)

Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N

30 tháng 5 2015

M=1+  3^100/1+3+3^2+..+3^99

=1+1:   1+3+3^2+...+3^99/3^100

=1+1:(1/3^100+1/3^99+..+1/3)

tương tự ta có

N=1+1:         (1/5^100+1/5^99+......+1/5)

do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3

=M<N