Cho M= 1+2+2^2+2^3+...+2^99. So sánh M với 2^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{100}{2^{101}}\)
\(A-\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
Ta có: \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}=1-\frac{1}{2^{100}}< 1\)
\(\Rightarrow\frac{1}{2}A< 1-\frac{100}{2^{101}}\)
\(\Rightarrow A< 2-\frac{200}{2^{101}}< 2\)
Vậy A<2
\(M=1^1+2^2+2^3+...+99^{99}+100^{100}\)
do đó \(100^{100}< M< 100^1+100^2+100^3+...+100^{99}+100^{100}\)
Nên 100.....0 (200 chữ số 0)< M< 10101....0100(201 chữ số)
Ta có M là số có 201 chữ số và 2 chữ số đầu tiên của M là 1,0 nên tổng là 1
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)
\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)
\(B=2B-B=2-\frac{1}{2^{99}}\)
Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
M=1+ 3^100/1+3+3^2+..+3^99
=1+1: 1+3+3^2+...+3^99/3^100
=1+1:(1/3^100+1/3^99+..+1/3)
tương tự ta có
N=1+1: (1/5^100+1/5^99+......+1/5)
do 1/5^100<1/3^100;1/5^99<1/3^99,...,1/5<1/3
=M<N
`M= 1+2+2^2+2^3+...+2^99.`
`=> 2M = M= 2+2^2+2^3+...+2^99 + 2^100`
`=> M = 2M-M = 2+2^2+2^3+...+2^99 + 2^100 - (1+2+2^2+2^3+...+2^99)`
`<=> M = 2^100-1 <2^100`
Vậy `...`