Cho tam giác ABC có M là trung điểm BC . Trên tia AM lấy điểm D sao cho MA = MD a) Chứng minh tam giác MAC = tam giác MDB b ) Chứng minh AC song song với BD c) trên các đoạn thẳng AC ; BD lần lượt lấy các điểm E;F sao cho CE= BF Chứng minh M;E;F thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
13 tháng 4 2021
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
a: Xét ΔMAC và ΔMDB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔMAC=ΔMDB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AC//BD
c: Xét tứ giác BFCE có
BF//CE
BF=CE
=>BFCE là hình bình hành
=>BC cắt FE tại trung điểm của mỗi đường
=>M,E,F thẳng hàng