chứng minh rằng voi mọi so nguyễn, y ta có:x5y-xy5 chia het cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5y-xy^5=xy\left(x^4-y^4\right)\)
\(=xy\left(x^4-1+1-y^2\right)\)
\(=xy\left(x^4-1\right)-xy\left(y^4-1\right)\)
\(=xy\left(x^2-1\right)\left(x^2+1\right)-xy\left(y^2-1\right)\left(y^2+1\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)\)
Xét \(xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=xy\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5xy\left(x-1\right)\left(x+1\right)\)
\(=y.\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5y\left(x-1\right)x\left(x+1\right)\)
Do x-2 ; x-1 ; x ; x+1 ; x+2 là 5 số liên tiếp
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2;3;5\)
Mà (2;;3;5) = 1
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮\left(2.3.5=30\right)\)
\(\Rightarrow y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\)
Lại có \(5\left(x-1\right)x\left(x+1\right)⋮2;3;5\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow5y\left(x-1\right)x\left(x+1\right)⋮30\)
Do đó \(y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)-5y\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮30\)
Tương tự \(xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow x^5y-xy^5⋮30\)
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040
\(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)
Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp
Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
Nên \(n^3-n\) luôn chia hết cho 6.
Tham khảo, chúc bạn học thật giỏi!
\(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\)
Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6
Ta có đpcm
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N(đpcm)