Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.39:
\(215=2\cdot10^2+1\cdot10^2+5\cdot10^0\)
\(902=9\cdot10^2+0\cdot10^1+2\cdot10^0\)
\(2020=2\cdot10^3+0\cdot10^2+2\cdot10^1+0\cdot10^0\)
1)
a) 4y2-4xy+x2= x2-4xy+4y2= (x-2y)2
b) 9x2-12xy+4y2= (3x)2-2.3x.2y+(2y)2= (3x-2y)2
c) 16x2-25=(4x)2-52= (4x-5)(4x+5)
d) 1-9y2= 12-(3y)2=(1-3y)(1+3y)
g) x3-27y3= (x-3y)(x2+3xy+9y2)
h) 64 + 8x3=(4+2x)(16+8x+4x2)
Bài 1:
a: =8xy/2x=4y
b: \(=\dfrac{4x-1-7x+1}{3x^2y}=\dfrac{-3x}{3x^2y}=\dfrac{-1}{xy}\)
c: \(=\dfrac{3x-x+6}{2x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}=\dfrac{1}{x}\)
e: \(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=-\dfrac{5}{2}\)
Bài 1:
a) \(=\dfrac{\left(2m-2n\right)^2}{5\left(m^2-n^2\right)}=\dfrac{4\left(m-n\right)^2}{5\left(m-n\right)\left(m+n\right)}=\dfrac{4m-4n}{4m+5n}\)
b) \(=\dfrac{\left(x-y\right)\left(x-z\right)}{\left(x+y\right)\left(x-z\right)}=\dfrac{x-y}{x+y}\)
c) \(=\dfrac{\left(x-3\right)\left(y-9\right)}{-\left(x-3\right)}=9-y\)
d) \(=\dfrac{\left(3x+2-x-2\right)\left(3x+2+x+2\right)}{x^2\left(x-1\right)}=\dfrac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\dfrac{8x+8}{x^2-x}\)
e) \(=\dfrac{xy\left(x-y\right)}{2}=\dfrac{x^2y-xy^2}{2}\)
g) \(=\dfrac{12x\left(1-2x\right)}{24x\left(x-2\right)}=\dfrac{1-2x}{2x-4}\)
Bài 2:
a) \(=\dfrac{3\left(m-2n\right)}{-5\left(m-2n\right)}=-\dfrac{3}{5}\)
b) \(=\dfrac{\left(y+1\right)\left(y^2+4\right)}{\left(y-3\right)\left(y+1\right)}=\dfrac{y^2+4}{y-3}\)
c) \(=\dfrac{y^4\left(y-2\right)+2y^2\left(y-2\right)-3\left(y-2\right)}{\left(y-2\right)\left(y+4\right)}=\dfrac{\left(y-2\right)\left(y^4+2y^2-3\right)}{\left(y-2\right)\left(y+4\right)}=\dfrac{y^4+2y^2-3}{y+4}\)
Bài 3:
\(A=\dfrac{\left(m^2+2mn+n^2\right)+5\left(m+n\right)-6}{\left(m^2+2mn+n^2\right)+6\left(m+n\right)}=\dfrac{\left(m+n\right)^2+5\left(m+n\right)-6}{\left(m+n\right)^2+6\left(m+n\right)}=\dfrac{2013^2+5.2013-6}{2013^2+6.2013}=\dfrac{2012}{2013}\)
Gọi O là giao điểm AC và BD \(\Rightarrow H\in BO\Rightarrow H\in BD\) do tam giác ABC đều
\(\Rightarrow SH\in\left(SBD\right)\)
Ta có: \(\left\{{}\begin{matrix}AC\perp BD\left(\text{2 đường chéo hình thoi}\right)\\SH\perp\left(ABCD\right)\Rightarrow SH\perp AC\end{matrix}\right.\)
\(\Rightarrow AC\perp\left(SBD\right)\)
b.
\(SH\perp\left(ABCD\right)\Rightarrow SH\) là hình chiếu vuông góc của SB lên (ABCD)
\(\Rightarrow\widehat{SBH}\) là góc giữa SB và (ABCD)
\(BH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow tan\widehat{SBH}=\dfrac{SH}{BH}=\sqrt{6}\) \(\Rightarrow\widehat{SBH}\approx67^048'\)
Theo cm câu a ta có \(AC\perp\left(SBD\right)\) tại O
\(\Rightarrow SO\) là hình chiếu vuông góc của SC lên (SBD)
\(\Rightarrow\widehat{CSO}\) là góc giữa SC và (SBD)
\(OC=\dfrac{1}{2}AC=\dfrac{a}{2}\)
\(OH=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{6}\Rightarrow SO=\sqrt{SH^2+OH^2}=\dfrac{5a\sqrt{3}}{6}\)
\(\Rightarrow tan\widehat{CSO}=\dfrac{OC}{SO}=\dfrac{\sqrt{3}}{5}\Rightarrow\widehat{CSO}\approx19^0\)