K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

Đặt \(2017-x=m,2019-x=n\)

\(\rightarrow m+n=2x-4036\)

Phương trình ban đầu trở thành :

\(m^3+n^3=\left(m+n\right)^3\)

\(\rightarrow3mn.\left(m+n\right)^3=0\)

\(\rightarrow\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\rightarrow\left[{}\begin{matrix}x=2017\\x=2018\\x=2019\end{matrix}\right.\)

Vậy \(S=\left\{2017;2018;2019\right\}\)

6 tháng 3 2023

(2017-X)3+(2019-X)3+(2X-4036)3=0

<=>(2017-x).(2018-x).(2019-x)=0

<=>x=2017

x=2018

x=2019

#YQ

Đặt 2017-x=a; 2019-x=b

\(\Leftrightarrow a+b=4036-2x\)

\(\Leftrightarrow-\left(a+b\right)=2x-4036\)

Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)

\(\Leftrightarrow-3ab\left(a+b\right)=0\)

mà -3<0

nên \(ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

Vậy: S={2017;2018;2019}

18 tháng 3 2021

Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)

Ta có: \(x+y+z=0\)

\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)

Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)

Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0 

=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

Gải phương trình được x=2017; x=2019; x=2018

10 tháng 3 2019

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

Vậy ...

14 tháng 3 2023

tui không hiểu đoạn bạn chuyển từ a^3+b^3+c^= (a+b)^-3ab(a+b)+c^3

10 tháng 3 2019

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

10 tháng 3 2019

\(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Leftrightarrow\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0^3\)

\(\Rightarrow\hept{\begin{cases}2017-x=0\\2019-x=0\\2x-4036=0\end{cases}\Rightarrow\hept{\begin{cases}x=2017\\x=2019\\x=2018\end{cases}}}\)

Vì x có 3 giá trị nên phương trình vô nghiệm

10 tháng 3 2019

nhận thấy (2017 - x) + (2019 -x) + (2x-4036) = 0 

gọi  2017 - x = a ; 2019-x = b và 2x-4036 = c

có a+b+c=0 (=) a+b=-c (=) a3+b3+3ab.(a+b) = -c3 (=) a3+b3+c3 = 3abc (vì a+b=-c) 

hay   (2017 - x)3 + (2019 -x)3 + (2x-4036)3 = 3.(2017 - x).(2019 -x).(2x-4036)   (1)

mà theo đề bài  (2017 - x)3 + (2019 -x)3 + (2x-4036)3 =0 (2)

từ (1) và (2) =) 3.(2017 - x).(2019 -x).(2x-4036) =0

=) 2017 - x=0 hoặc 2019 -x=0 hoặc 2x-4036=0

(=) x=2017 hoặc x=2019 hoặc x=2018

vậy....

17 tháng 3 2019

Câu 3b

Phương trình chứa ẩn ở mẫu

17 tháng 3 2019

Bài 2:

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)