K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Ta có \(\left(x-3\right)^2\ge0\)( lũy thừa bậc chẵn)

=> \(8.\left(x-3\right)^2\ge0\)

=>8.(x-3)2+3\(\ge3>0\)

Vậy đa thức N(x)=8.(x-3)2+3 không có nghiệm

3 tháng 4 2017

Đa thức N(x) có nghiệm khi :

8(x-3)2+3=0

8(x-3)2=-3

(x-3)2= -3:8

(x-3)2= \(\dfrac{-3}{8}\)

vì (x-3)2>= 0

Nên Đa thức N(x)= 8(x-3)2+3 không có nghiệm

Vậy Đa thức N(x)= 8(x-3)2+3 không có nghiệm

3 tháng 4 2017

8(x-3)2+3=0

8(x-3)2=-3

(x-3)2= -3:8

(x-3)2= −38−38

vì (x-3)2>= 0

Nên Đa thức N(x)= 8(x-3)2+3 không có nghiệm

Vậy Đa thức N(x)= 8(x-3)2+3 không có nghiệm

25 tháng 4 2018

Câu 1:

Ta có:

\(P\left(x\right)=x^2+2x+2\\ P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\\ P\left(x\right)=x\left(x+1\right)+\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)\left(x+1\right)+1\\ P\left(x\right)=\left(x+1\right)^2+1\)

\(\left(x+1\right)^2\ge0\)

nên\(\left(x+1\right)^2+1\ge1\)

\(\Rightarrow P\left(x\right)\ge1\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm

25 tháng 4 2018

Câu 2:

Ta có:

\(\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2\ge0\\ \Rightarrow2\left(x-3\right)^2+5\ge5\ne0\\ \Rightarrow P\left(x\right)\ne0\)

Vậy đa thức \(P\left(x\right)\) không có nghiệm.

\(P\left(x\right)+Q\left(x\right)=x^3+x^2+x+2+x^3-x^2-x+2=2x^3+3\)

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

21 tháng 3 2016

có: 2(x-3)^2 >hoặc = 0 với mọi x

suy ra: 2(x-3)^2+5 >hoặc = 5 với mọi x

suy ra: P(x) > 0 với mọi x

suy ra: đa thức không có nghiệm (đpcm)

21 tháng 3 2016

giả sử 

=> P(x)=2(x-3)^2+5=0

=> 2(x-3)^2=-5

=> (x-3)^2=-2.5

vì (x-3)^2 lớn hơn hoặc bằng 0 nên x ko tồn tại

=> đa thức trên vô nghiệm

28 tháng 3 2019

giảm biến là j

7 tháng 7 2020

a,\(M(x)=6x^3+2x^4-x^2+3x^2-2x^3-x^4+1-4x^3\)

\(=(2x^4-x^4)+(6x^3-2x^3-4x^3)+(-x^2+3x^2)+1\)

\(=x^4+2x^2+1\)

b.\(M(x)+N(x)=(x^4+2x^2+1)+(-5x^4+x^3+3x^2-3)\)

\(=(x^4-5x^4)+x^3+(2x^2+3x^2)+(1-3)\)

\(=-4x^4+x^3+5x^2-2\)

\(M(x)-N(x)=(x^4+2x^2+1)-(-5x^4+x^3+3x^2-3)\)

\(=(x^4+5x^4)-x^3+(2x^2-3x^2)+(1+3)\)

\(=6x^4-x^3-x^2+4\)

c.Ta có

\(M(x)=x^4+2x^2+1=0\)

\(\Rightarrow x^4+2x^2=-1\)

mà \(x^4\ge0;2x^2\ge0\)

Vậy đa thức \(M(x)\)ko có nghiệm

Chúc bạn học tốt