K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 5 2021

Kẻ \(CH\perp AB\Rightarrow AB\perp\left(CC'H\right)\)

\(\Rightarrow\widehat{CHC'}\) là góc giữa (C'AB) và (ABC) \(\Rightarrow\widehat{CHC'}=30^0\)

\(\Rightarrow CH=C'H.cos30^0=\dfrac{C'H.\sqrt{3}}{2}\)

\(S_{ABC}=\dfrac{1}{2}CH.AB=\dfrac{\sqrt{3}}{2}.\left(\dfrac{1}{2}C'H.AB\right)=\dfrac{\sqrt{3}}{2}S_{C'AB}=6\sqrt{3}\)

15 tháng 3 2017

Đáp án B

19 tháng 2 2017

28 tháng 4 2017

Chọn A.

Phương pháp

Tính diện tích tam giác đáy và chiều cao lăng trụ suy ra thể tích theo công thức V=Bh .

Cách giải: 

30 tháng 3 2019

10 tháng 4 2018

S đáy=1/2*16*9=72cm2

V=72*20=1440(cm3)

20 tháng 7 2018