Tính tổng:
S = 1 x 2 + 2 x 3 + 3 x 4 + .... + 98 x 99 + 99 x 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S=1x2x3+2x3x3+3x4x3+...+98x99x3+99x100x3
3S=1x2x3+2x3x(4-1)+3x4x(5-2)+...+98x99x(100-97)+99x100x(101-98)
3S=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-97x98x99+98x99x100-98x99x100+99x100x101=99x100x101
S=33x100x101=333300
3xS = 1x 2x 3 + 2x3x3 + 3x4x3 + ...+ 98x99x3 + 99x100x3
= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) +...+98x99x(100-97) + 99x100x(101-98)
= 1x2x3 -1x2x3 + 2x4x4 -2x3x4 + 3x4x5 +...- 97x98x99 +98x99x100 -98x99x199 + 99x100x101
= 99x100x101 = 999900
=> S = 999900 : 3 =333300
a)
Ta có : ( 1 + 2 + 3 + ... + 99)
Số số hạng là: ( 99 - 1 ) : 1 + 1 = 100
Tổng là: ( 99 + 1 ) x 100 : 2 = 5000
=> 5000 x ( 13 - 12 - 1 ) x 15
=> 5000 x 10 x 15
=> 50000 x 15
=> 750000
Ko muốn vt nx :))
a) Số số hạng: \(\frac{\left(99-1\right)}{1}+1=99\)
Tổng: \(\frac{99+1}{2}\cdot99=4950\)
b) Số số hạng: \(\frac{\left(100-2\right)}{2}+1=50\)
Tổng: \(\frac{100+2}{2}\cdot50=2550\)
c) \(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(3\cdot S=1\cdot2\left(3-0\right)+2\cdot3\left(4-1\right)+3\cdot4\left(5-2\right)+...+99\cdot100\left(101-98\right)\)
\(3\cdot S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+99\cdot100\cdot101-98\cdot99\cdot100\)
\(3\cdot S=99\cdot100\cdot101\)
Vậy, \(S=\frac{1}{3}\cdot99\cdot100\cdot101=333300\)
Khi Nhân 99/ 100 với một số ta được kết quả bằng 100 .
Vậy phép nhân đó là:.......….…
Giảinhanh giúp mình với
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100
\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)
\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97
\(\Rightarrow\) 4A = 98 . 99 . 100 . 101
\(\Rightarrow\) 4A = 97990200
\(\Rightarrow\) A = 24497550
Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100
=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)
=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97
=>4A = 98 . 99 . 100 . 101 4A = 97990200
=>A = 24497550
Vậy A= 24497550
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)