K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED
b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>DE vuông góc BC

c: DA=DE

mà DE<DC
nên DA<DC

8 tháng 3 2022

a) -Xét △AIC và △DIB có:

\(\widehat{IAC}=\widehat{IDB}=90^0\)

\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)

\(\Rightarrow\)△AIC∼△DIB (g-g).

\(\Rightarrow\dfrac{AI}{DI}=\dfrac{CI}{BI}\) nên \(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)

b) -Xét △AID và △CIB có:

\(\widehat{AID}=\widehat{CIB}\) (đối đỉnh)

\(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)(cmt)

\(\Rightarrow\)△AID∼△CIB (c-g-c) nên \(\widehat{ABC}=\widehat{ADC}\)

c) -Có: \(\widehat{IAD}=\widehat{ICB}\) (△AID∼△CIB)

\(\widehat{ICA}=\widehat{IBD}\)(△AIC∼△DIB)

Mà \(\widehat{ICB}=\widehat{ICA}\) (CI là tia phân giác của \(\widehat{ACB}\))

\(\Rightarrow\widehat{IAD}=\widehat{IBD}\)
\(\Rightarrow\)△ADB cân tại D nên \(DA=DB\)

 

 

a: Xét ΔABE vuông tại E và ΔACD vuông tại D có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Ta có:ΔABE=ΔACD

nên AE=AD

hay ΔADE cân tại A

c: Xét ΔABC có

AD/AB=AE/AC

Do đó: DE//BC

5 tháng 2 2022

a. Xét △ABC và △DAB có:

\(\widehat{BAC}=\widehat{ADB}=90^0\).

\(\widehat{DAB}=\widehat{ABC}\) (AD//BC và so le trong).

=>△ABC ∼ △DAB (g-g).

b. Xét △ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).

=>\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\) (cm).

-Ta có: \(\dfrac{AB}{DA}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)

=>\(DA=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\) (cm).

-Ta có: \(\dfrac{AC}{DB}=\dfrac{BC}{AB}\) (△ABC ∼ △DAB)

=>\(DB=\dfrac{AC.AB}{BC}=\dfrac{15.20}{25}=12\) (cm)

c. Xét △AID có: AD//BC (gt).

=>\(\dfrac{BI}{AI}=\dfrac{BC}{AD}\) (định lí Ta-let).

=>\(\dfrac{AB}{AI}=\dfrac{BC+AD}{AD}\)

=>\(AI=\dfrac{AB.AD}{BC+AD}=\dfrac{15.9}{25+9}\approx4\) (cm).

\(S_{BIC}=S_{ABC}-S_{AIC}=\dfrac{1}{2}AB.AC-\dfrac{1}{2}AI.AC=\dfrac{1}{2}AC\left(AB-AI\right)=\dfrac{1}{2}.20.\left(15-4\right)=110\)(cm2)

 

5 tháng 2 2022

a) Xét  ` ΔABC` và ` ΔDAB` có:

`hat(BAC) = hat(ADB) = 90^0` (vì `Δ ABC` vuông tại `A` ; `BD ⊥ a ` tại `D`)

`hat(CBA) =hat(BAD)` (vì `a////BC` nên `hat(CBA)` và `hat(BAD)` là 2 góc so le trong)

`=>  ΔABC ` $\backsim$ `ΔDAB` (g.g)

Vậy `ΔABC`  $\backsim$ `ΔDAB`  ( g.g)

b) Áp dụng định lí Py-ta-go cho `ΔABC ` vuông tại `A` ta được:

`BC^2 = AC^2 + AB^2`

`=> BC^2 = 15^2 + 20^2`

`=> BC^2 =625`

`=> BC= 25` (cm) (vì `BC > 0`)

Theo phần a ta có: `ΔABC`  $\backsim$ `ΔDAB`

`=> (AB)/(DA) = (AC)/(DB) = (BC)/(AB) = 25/15 = 5/3`

Với `(AB)/(DA) = 5/3 => 15/(DA) = 5/3 => DA = 15 : 5/3 = 9` (cm)

Với `(AC)/(DB) = 5/3 => 20/(DB) =5/3 => DB = 20 : 5/3 = 12` (cm)

Vậy `BC = 20`cm; `DA = 9` cm ; `DB = 12`  cm

c) Xét `ΔADI` và `ΔIBC`, theo hệ quả định lí Ta-lét ta có:

`(AI)/(IB) = (AD)/(BC) = 9/20`

`=> (AI)/9 = (IB)/20`

Mà `AI + IB = AB = 15` cm 

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

`(AI)/9 = (IB)/20 = (AI +IB)/(9+20) = 15/29`

`=> AI = 15/29 . 9 =135/29` cm

`S_(AIC) = 1/2 . 135/29 .20 =1350/29 ` (`cm^2`)

`S_(ABC) = 1/2 . 15.20 =150` (`cm^2`)

`=> S_(BIC) = 150 -1350/29=3000/29` (`cm^2)`

Vậy `S_(BIC) =3000/29` (`cm^2`)

 

 

19 tháng 3 2022

a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:

BC2=AB2+AC2

=>BC2=92+122=81+144=225.

=>BC=15(cm)

b, Xét tg ABD và tg EBD, có: 

góc ABD= góc DBE(tia phân giác)

BD chung.

góc A= góc E(=90o)

=>tg ABD= tg EBD(ch-gn)

19 tháng 3 2022

Câu c thì mình ... chịu :<