Quy đồng các phân số sau :
a, \(\dfrac{-1}{3}\) ; \(\dfrac{2}{3}\) ; \(\dfrac{-1}{-2}\) ; \(\dfrac{6}{-24}\) ; -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left\{{}\begin{matrix}\dfrac{1}{5}=\dfrac{1.6}{5.6}=\dfrac{6}{30}\\\dfrac{1}{6}=\dfrac{1.5}{6.5}=\dfrac{5}{30}\\\dfrac{2}{15}=\dfrac{2.2}{15.2}=\dfrac{4}{30}\\\dfrac{1}{10}=\dfrac{1.3}{10.3}=\dfrac{3}{30}\end{matrix}\right.\)
Quy luật: Tử số của mỗi phân số cách nhau \(1\) đơn vị, cùng chung mẫu số là \(30\).
Phân số tiếp theo: \(\dfrac{2}{30}=\dfrac{1}{15}\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{9}=\dfrac{1.5}{9.5}=\dfrac{5}{45}\\\dfrac{1}{15}=\dfrac{1.3}{15.3}=\dfrac{3}{45}\end{matrix}\right.\)
Quy luật: Tử số của mỗi phân số cách nhau \(1\) đơn vị, cùng chung mẫu số là \(45\).
Phân số tiếp theo: \(\dfrac{1}{45}\)
1)
\(\dfrac{3}{4}=\dfrac{3\times3}{4\times3}=\dfrac{9}{12}\)
\(\dfrac{2}{12}\) (giữ nguyên)
2)
\(\dfrac{1}{4}=\dfrac{1\times3}{4\times3}=\dfrac{3}{12}\)
\(\dfrac{2}{3}=\dfrac{2\times4}{3\times4}=\dfrac{8}{12}\)
a) \(\dfrac{3}{4}\) và \(\dfrac{2}{12}\)
\(\dfrac{3}{4}=\dfrac{3\times3}{4\times3}=\dfrac{9}{12}\) ; giữ nguyên \(\dfrac{2}{12}\)
Quy đồng mẫu số hai phân số \(\dfrac{3}{4}\) và \(\dfrac{2}{12}\) được hai phân số \(\dfrac{9}{12}\) và \(\dfrac{2}{12}\).
b) \(\dfrac{1}{4}\) và \(\dfrac{2}{3}\)
\(\dfrac{1}{4}=\dfrac{1\times3}{4\times3}=\dfrac{3}{12}\) ; \(\dfrac{2}{3}=\dfrac{2\times4}{3\times4}=\dfrac{8}{12}\)
Quy đồng mẫu số hai phân số \(\dfrac{1}{4}\) và \(\dfrac{2}{3}\) được hai phân số \(\dfrac{3}{12}\) và \(\dfrac{8}{12}\).
\(\dfrac{1}{8}=\dfrac{5}{40}\)
\(\dfrac{1}{20}=\dfrac{2}{40}\)
\(-\dfrac{1}{40}=\dfrac{-1}{40}\)
\(-\dfrac{1}{10}=\dfrac{-4}{40}\)
Vậy: Quy luật sẽ là mẫu số là 40, tử số trừ đi 3
Hai phân số kế tiếp là: \(-\dfrac{7}{40};-\dfrac{1}{4}\)
Ta có: \(\dfrac{5}{7} = \dfrac{{5.4}}{{7.4}} = \dfrac{{20}}{{28}}\) và \(\dfrac{{ - 3}}{4} = \dfrac{{ - 3.7}}{{4.7}} = \dfrac{{ - 21}}{{28}}\)
Như vậy, \(\dfrac{{20}}{{28}} + \dfrac{{ - 21}}{{28}} = \dfrac{{20 + \left( { - 21} \right)}}{{28}} = \dfrac{-1}{{28}}\)
a: 27/-180=-27/180=-3/20=-21/140
-6/-35=6/35=24/120
-3/-28=3/28=15/140
b: \(\dfrac{3\cdot4+3\cdot7}{6\cdot5+9}=\dfrac{3\left(4+7\right)}{30+9}=\dfrac{11}{13}=\dfrac{2849}{13\cdot259}\)
\(\dfrac{6\cdot9-2\cdot17}{63\cdot6-119}=\dfrac{54-34}{259}=\dfrac{20}{259}=\dfrac{260}{259\cdot13}\)
Bài 1:
a)
\(\dfrac{1}{2}=\dfrac{1\times6}{2\times6}=\dfrac{6}{12}\)
\(\dfrac{2}{3}=\dfrac{2\times4}{3\times4}=\dfrac{8}{12}\)
\(\dfrac{3}{4}=\dfrac{3\times3}{4\times3}=\dfrac{9}{12}\)
b)
\(\dfrac{1}{3}=\dfrac{1\times15}{3\times15}=\dfrac{15}{45}\)
\(\dfrac{2}{15}=\dfrac{2\times3}{15\times3}=\dfrac{6}{45}\)
\(\dfrac{4}{45}\) (giữ nguyên)
c)
\(\dfrac{1}{8}=\dfrac{1\times3}{8\times3}=\dfrac{3}{24}\)
\(\dfrac{2}{3}=\dfrac{2\times8}{3\times8}=\dfrac{16}{24}\)
\(\dfrac{5}{2}=\dfrac{5\times12}{2\times12}=\dfrac{60}{24}\)
d)
\(\dfrac{2}{7}=\dfrac{2\times4}{7\times4}=\dfrac{8}{28}\)
\(\dfrac{9}{4}=\dfrac{9\times7}{4\times7}=\dfrac{63}{28}\)
\(\dfrac{5}{28}\) (giữ nguyên)
Bài 2:
a)
\(4=\dfrac{4}{1}=\dfrac{4\times12}{1\times12}=\dfrac{48}{12}\)
\(\dfrac{9}{4}=\dfrac{9\times3}{4\times3}=\dfrac{27}{12}\)
b)
\(\dfrac{5}{8}=\dfrac{5\times30}{8\times30}=\dfrac{150}{240}\)
\(\dfrac{25}{30}=\dfrac{5}{6}=\dfrac{5\times40}{6\times40}=\dfrac{200}{240}\)
\(2=\dfrac{2}{1}=\dfrac{2\times240}{1\times240}=\dfrac{480}{240}\).
a) \(\dfrac{1}{6};\dfrac{1}{3};\dfrac{1}{2};...\)
\(\Rightarrow\dfrac{1}{6};\dfrac{2}{6};\dfrac{3}{6};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{4}{6}\)
b) \(\dfrac{1}{8};\dfrac{5}{24};\dfrac{7}{24};...\)
\(\Rightarrow\dfrac{3}{24};\dfrac{5}{24};\dfrac{7}{24};...\)
Dãy có quy luật tăng dần lên 2 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{9}{24}\)
c) \(\dfrac{1}{5};\dfrac{1}{4};\dfrac{1}{3};...\)
\(\dfrac{4}{20};\dfrac{5}{20};\dfrac{6}{20};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{7}{20}\)
d) \(\dfrac{4}{15};\dfrac{3}{10};\dfrac{1}{3};...\)
\(\Rightarrow\dfrac{8}{30};\dfrac{9}{30};\dfrac{11}{30};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{12}{30}\)
a)
\(\dfrac{5}{9}< \dfrac{9}{9}\)
\(\dfrac{8}{7}>\dfrac{7}{7}\)
\(\dfrac{9}{9}=1\)
\(\dfrac{18}{4}>\dfrac{3}{4}\)
b)
\(\dfrac{2}{5},\dfrac{3}{5},\dfrac{8}{5}\)
\(\dfrac{5}{2}=\dfrac{15}{6},\dfrac{1}{6},1=\dfrac{6}{6}\rightarrow\dfrac{1}{6},\dfrac{6}{6},\dfrac{15}{6}\)
\(\dfrac{5}{7}=\dfrac{75}{105}\)
\(\dfrac{-3}{21}=\dfrac{-15}{105}\)
\(\dfrac{-8}{15}=\dfrac{-56}{105}\)
5/7 =75/105
-3/21= -15/105
-8/15=-56/105