K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề hỏi tìm gì mình không biết

23 tháng 6 2021

`1/((sqrtx-1)(sqrtx+2))-1/((sqrtx-1)(3-sqrtx))`

`=1/((sqrtx-1)(sqrtx+2))+1/((sqrtx-1)(sqrtx-3))`

`=(sqrtx-3+sqrtx+2)/((sqrtx-1)(sqrtx+2)(sqrtx-3))`

`=(2sqrtx-1)/((sqrtx-1)(sqrtx+2)(sqrtx-3))`

23 tháng 6 2021

ko cs dau trừ mà bn có 2 bài lẫn

 

15 tháng 8 2020

Bài 2 :

b) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) (1)

ĐKXĐ : \(x\ge1\)

Pt(1) tương đương :

\(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|=2\) (*)

Xét \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\)

\(\Rightarrow\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\)

Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+\sqrt{x-1}-1=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\) ( Thỏa mãn )

Xét \(1\le x< 2\) thì \(x\ge2\Rightarrow\sqrt{x-1}-1< 0\)

Nên : \(\left|\sqrt{x-1}-1\right|=1-\sqrt{x-1}\). Khi đó pt (*) trở thành :

\(\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

\(\Leftrightarrow2=2\) ( Luôn đúng )

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{x|1\le x\le2\right\}\)

15 tháng 8 2020

Bài 1 : 

a) ĐKXĐ : \(-1\le a\le1\)

Ta có : \(Q=\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\frac{3}{\sqrt{1-a^2}}\right)\)

\(=\left(\frac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right)\cdot\frac{\sqrt{1-a^2}}{3}\)

\(=\frac{3+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}\cdot\frac{\sqrt{\left(1-a\right)\left(1+a\right)}}{3}\)

\(=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\)

Vậy \(Q=\frac{\left(3+\sqrt{1-a^2}\right).\sqrt{1-a}}{3}\) với \(-1\le a\le1\)

b) Với \(a=\frac{\sqrt{3}}{2}\) thỏa mãn ĐKXĐ \(-1\le a\le1\)nên ta có :

\(\hept{\begin{cases}1-a=1-\frac{\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{\left(\sqrt{3}-1\right)^2}{2^2}\\1-a^2=1-\frac{3}{4}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\sqrt{1-a}=\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2^2}}=\left|\frac{\sqrt{3}-1}{2}\right|=\frac{\sqrt{3}-1}{2}\\\sqrt{1-a^2}=\frac{1}{2}\end{cases}}\)

Do đó : \(Q=\frac{\left(3+\frac{1}{2}\right)\cdot\frac{\sqrt{3}-1}{2}}{3}=\frac{5\sqrt{3}-5}{12}\)

4 tháng 10 2019

a/ ĐKXĐ : \(x\ge0;x\ne9;x\ne4\)

Ta có :

\(P=\left(\frac{2\sqrt{x}}{9-x}+\frac{1}{3+\sqrt{x}}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)

\(=\left(\frac{2\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{3-\sqrt{x}}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right).\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x-2}}\)

\(=\frac{\sqrt{x}+3}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{x\left(3-\sqrt{x}\right)}{\sqrt{x}-2}\)

\(=\frac{1}{\sqrt{x}-2}\)

Vậy \(P=\frac{1}{\sqrt{x}-2}\) với ĐKXĐ \(x\ge0;x\ne9;x\ne4\)

b/ Với ĐKXĐ \(x\ne0;x\ne9;x\ne4\) ta có :

\(P=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{\sqrt{x}-2}=-\frac{1}{3}\)

\(\Leftrightarrow2-\sqrt{x}=3\)

\(\Leftrightarrow\sqrt{x}=-1\) (vô lí)

Vậy không tìm đc x thỏa mãn

4 tháng 10 2019

a: \(=3\sqrt{5}-\left(\sqrt{5}-2\right)=2\sqrt{5}+2\)

b: \(=\left|a-b\right|-\left|b-c\right|-\left|c-d\right|\)

\(=b-a-\left(c-b\right)-\left(d-c\right)\)

=b-a-c+b-d+c

=2b-d-a

3 tháng 8 2018

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-2}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{2\sqrt{x}-x}\right)=\dfrac{x-2\sqrt{x}+3\sqrt{x}+6+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

18 tháng 8 2020

Đặt x=a-2,ta có : \(P=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\left(\frac{3\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{2\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{\sqrt{x}-2}{3}.\frac{3}{3-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

11 tháng 9 2018

mn ơi giúp em vs ạ !!!

11 tháng 9 2018

giúp e vs

14 tháng 12 2019

có cả mấy bất đẳng thức đó hả

bn viết công thức tổng quát ra cho mk vs

mk thanks