giải phương trình: (2x-3)^2 = 4x^2-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a: Ta có: \(\sqrt{4x^2+4x+3}=8\)
\(\Leftrightarrow4x^2+4x+1+2-64=0\)
\(\Leftrightarrow4x^2+4x-61=0\)
\(\Delta=4^2-4\cdot4\cdot\left(-61\right)=992\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-4\sqrt{62}}{8}=\dfrac{-1-\sqrt{62}}{2}\\x_2=\dfrac{-4+4\sqrt{62}}{8}=\dfrac{-1+\sqrt{62}}{2}\end{matrix}\right.\)
a)\(x^3+x^2+x=-\dfrac{1}{3}\)
\(\Leftrightarrow3x^3+3x^2+3x=-1\)
\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)
\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)
\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)
b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x+8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow\sqrt[3]{4}x=x-2\)
\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)
Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc
Icon này này,mấy người đánh máy nhanh quá làm toi phải bỏ đi mấy bài :), mà mấy bài dài vc chứ ngắn gì đâu
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\2x+y-\frac{2}{2x-y}=2\end{cases}}\)
\(\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)-2=2\left(2x-y\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}8\left(2x+y\right)^2-10\left(2x+y\right)\left(2x-y\right)-3\left(2x-y\right)^2=0\\\left(2x+y\right)\left(2x-y\right)=2\left(2x-y\right)+2\end{cases}}\)
\(\Rightarrow8\left(2+\frac{2}{2x-y}\right)^2-20\left(2x-y\right)-20-3\left(2x-y\right)^2=0\)
Giải pt này vs ẩn là (2x-y) được nghiệm là 2
Rồi bạn lm nốt nhá
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)
Ta có : \(x^2+2x^2-4x=-\frac{8}{3}\)
\(\Leftrightarrow3x^3+6x^2-12x=8\)
\(\Leftrightarrow3x^3+6x^2-12x-8=0\)
\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)
\(\Leftrightarrow4x^3-\left(x-2\right)^3=0\)
\(\Rightarrow4x^3=\left(x-2\right)^3\)
\(\Leftrightarrow x^3\sqrt{4}=x-2\)
\(\Leftrightarrow x=\frac{2}{1-^3\sqrt{4}}\)
pn ơi từ dòng thứ 2 là -8 k phải 8 . nhưng đến lúc đưa vào hằng đẳng thức thì đúng r nha
\((2x-3)^{2}=(4x)^2-8 =(4x)^{2}-12x+9=(4x)^{2}-8 =(4x)^{2}-12x+9-(4x)^{2}+8=0 =12x+17=0 =12x=-17 =x=\dfrac{-1}{12}\)
\(\dfrac{-17}{12}\)