K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Cho thêm a,b,c dương nữa nhé :)

Áp dụng BĐT AM-GM ta có: 

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\)

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}\cdot\frac{c^2}{a^2}}=2\sqrt{\frac{b^2}{a^2}}=\frac{2b}{a}\)

\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\sqrt{\frac{c^2}{a^2}\cdot\frac{a^2}{b^2}}=2\sqrt{\frac{c^2}{b^2}}=\frac{2c}{b}\)

Cộng theo vế 3 BĐT trên ta có: 

\(\frac{2a^2}{b}+\frac{2b^2}{c}+\frac{2c^2}{a}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)

\(\Leftrightarrow2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge2\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)

Đẳng thức xảy ra khi \(a=b=c\)

NV
3 tháng 7 2020

Hy vọng a;b;c dương

Khi đó: \(\frac{a^2}{b^2}+1\ge\frac{2a}{b}\) ; \(\frac{b^2}{c^2}+1\ge\frac{2b}{c}\) ; \(\frac{c^2}{a^2}+1\ge\frac{2c}{a}\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3\right)\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\sqrt[3]{\frac{abc}{abc}}-3\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Dấu "=" xảy ra khi \(a=b=c\)

21 tháng 4 2018

Áp dụng bất đẳng thức \(a^2+b^2\ge2ab\)

ta có\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\frac{ab}{bc}=2\frac{a}{c}\)

tương tự:\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)

\(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{c}{b}\)

Cộng 3 về bất đẳng thức trên lại với nhau ta đươc:\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)

  \(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Dấu "=" xảy ra khi \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

6 tháng 10 2019

Áp dụng BĐT Cô - si cho các số dương ta có :

+ ) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}.\frac{b^2}{c^2}}=\frac{2a}{c}\left(1\right)\)

Cmt ta có : \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\left(2\right)\)

+ ) \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\left(3\right)\)

Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :

\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)

\(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\left(đpcm\right)\)

Chúc bạn học tốt !!!

5 tháng 2 2020

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

5 tháng 2 2020

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

30 tháng 3 2018

Áp dụng bất đẳng thức AM-GM:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2b^2}{b^2c^2}}=2\sqrt{\frac{a^2}{c^2}}=2\left|\frac{a}{c}\right|\ge\frac{2a}{c}\)

Chứng minh tương tự: \(\hept{\begin{cases}\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\\\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}\end{cases}}\)

Cộng theo vế: \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Dấu "=" khi \(a=b=c\)

15 tháng 8 2016

Theo bất đẳng thức Cauchy-Schwarzt ta có \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}.\)
Mặt khác, \(a^2+b^2+c^2\ge ab+bc+ca\), do đó ta suy ra \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2.\)

15 tháng 8 2016

P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

NV
30 tháng 8 2020

\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)

\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

30 tháng 8 2020

bài này có dùng bất đẳng thức cô si ko vậy ạ?

30 tháng 4 2016

Ta có: \(\left(\frac{a}{b}-\frac{b}{c}-\frac{c}{a}\right)^2\ge0\)

<=>\(\frac{a^2}{b^2}-\frac{2a}{c}+\frac{b^2}{c}+\frac{c^2}{a^2}-\frac{2c}{b}-\frac{2b}{a}\ge0\)

<=>\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2c}{b}+\frac{2b}{a}+\frac{2a}{c}\)

cùng đường nếu a,b,c > hoặc = 0 thì dễ

30 tháng 4 2016

chính xác nếu a,b,c cùng dấu là dễ