1 . Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OAa) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếpb) cm tam giác ADI đồng dạng tam giác AHOc) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°2 . Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại...
Đọc tiếp
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
a: góc AHB=90 độ
=>H nằm trên đường tròn đường kính AB
góc AHC=90 độ
=>H nằm trên đường tròn đường kính AC
b: góc IHA=góc IBM
góc KHA=góc KCN
góc AMB=góc ANC-90 độ
=>góc IHK=góc IBM+góc KCN
=góc MBA+góc NCA
=180 độ-góc MAB-góc NAC
=90 độ
=>góc IHK+góc IAK=180 độ
=>A,H,I,K nội tiếp
c: góc HAK=góc HIK
góc IAH+góc HAK=90 độ
góc IAH=góc BMI
=>góc HIK=góc AMI
=>IK//MN