Tìm GTNN của đa thức:
a.(2*x+3)^2+1
b.x^2+4*x+6
c.x*2+2*x-5
Tìm GTLN của đa thức:
a.-x^2+6*x-5
b.-2*x^2+4*x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)
\(=x^2-6x+9-9\)
\(=\left(x-3\right)^2-9\)
Vì: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)
Hay: \(A\ge-9\forall x\)
Dấu = xảy ra khi (x-3)^2=0
<=>x=3
Vậy Min A= -9 tại x=3
b,Ta có: \(B=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(=-3\left(x^2+3x+\frac{7}{3}\right)\)
\(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)
\(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)
\(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)
Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)
\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)
Hay \(B\le\frac{-1}{4}\forall x\)
Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy Max B=-1/4 tại x=-3/2
a) \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)
Vậy Min A = -9 khi x = 3
b) \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)
\(=-3\left(x+4,5\right)^2+53,75\le53,75\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)
Vậy Max B = 53,75 khi x = -4,5
`f(x)=0 <=> (x-2)(x-16)-x(2-x)=0`
`(x-2)(x-16)+x(x-2)=0`
`(x-2)(x-16+x)=0`
`(x-2)(2x-16)=0`
`[(x-2=0),(2x-16=0):}`
`[(x=2),(x=8):}`.
a: f(x)=0
=>x(2x-1)=0
=>x=0 hoặc x=1/2
b: g(x)=0
=>x^2-1=0
=>x^2=1
=>x=1 hoặc x=-1
c: h(x)=0
=>x^2-3=0
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
a) \(\begin{array}{l}P(x) = ( - 2{x^2} - 3x + x - 1)(3{x^2} - x - 2) \\= - 2{x^2}(3{x^2} - x - 2) - 3x(3{x^2} - x - 2) + x(3{x^2} - x - 2) - 1.(3{x^2} - x - 2)\\ = - 6{x^4} + 2{x^3} + 4{x^2} - 9{x^3} + 3{x^2} + 6x + 3{x^3} - {x^2} - 2x - 3{x^2} + x + 2\\ = - 6{x^4} - 4{x^3} + 3{x^2} + 5x + 2\end{array}\)
Bậc của đa thức là: 4.
Hệ số cao nhất của đa thức là: – 6.
Hệ số tự do của đa thức là: 2.
b)
\(\begin{array}{l}Q(x) = ({x^5} - 5)( - 2{x^6} - {x^3} + 3) \\= {x^5}( - 2{x^6} - {x^3} + 3) - 5( - 2{x^6} - {x^3} + 3) \\ = - 2{x^{11}} - {x^8} + 3{x^5} + 10{x^6} + 6{x^3} - 15\\ = - 2{x^{11}} - {x^8} + 10{x^6} + 3{x^5} + 6{x^3} - 15\end{array}\)
Bậc của đa thức là: 11.
Hệ số cao nhất của đa thức là: – 2.
Hệ số tự do của đa thức là: – 15.
A(x) + B(x) = x4 - 3x + 3 + x4 - x + 128
A(x) +B(x) = (x4 + x4) - (3x+x) +( 3 +128)
A(x) + B(x) = 2x4 - 4x + 131
A(x) -B(x) = x4 - 3x + 3 - (x4 - x + 128)
A(x) -B(x) = x4 - 3x + 3 - x4 + x - 128
A(x) - B(x) = (x4 - x4) - (3x - x) - ( 128 - 3)
A(x) - B(x) = 0 - 2x - 125
A(x) - B(x) = -2x - 125
A(x) = x4 + 3 - 3x
A(x) = x4 - 3x + 3
B(x) = 53 + 3 - 3x2 + x4 - 2x + 3x2 + x
B(x) = (125 + 3) - ( 3x2 - 3x2) + x4 -( 2x - x)
B(x) = 128 - 0 + x4 - x
B(x) = x4 - x + 128
b, A(2) = 24 - 3 \(\times\) 2 + 3
A(2) = 16 - 6 + 3
A(2) = 10 + 3
A(2) = 13