cho tam giác ABC cs 3 góc nhọn các đường cao AD BE CF cắt nhau tại H
a) Cm Tg AEHF- BDHF -CDHE -ABDE- ACDF BCEF (ko lm cx đc)
b)gọi I là trung điểm của AH,O là trung điểm BC. Cm OE là tiếp tuyến của đtr (i) dk AH, IE là tiếp tuyến của đtr(o) dk BC
C)Cm H là tâm đtr nt tam giác DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BDHF co
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: góc IEO=góc IEH+góc OEH
=góc IHE+góc OBE
=góc BHD+góc HBD=90 độ
=>OE là tiếp tuyến của (I), IE là tiếp tuyến của (O)
c: góc FDH=góc ABE
góc EDH=góc ACF
mà góc ABE=góc ACF
nên góc FDH=góc EDH
=>DH là phân giác của góc FDE(1)
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc FED(2)
Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔDEF
a.
Xét tứ giác CDHE có:
\(\widehat{CDH}+\widehat{CEH}=90^o+90^o=180^o\)
Do đó: tứ giác CDHE là tứ giác nội tiếp.
b. Gọi I là trung điểm của HC
=> I là tâm đường tròn ngoại tiếp tam giác DEC
Có: EM là trung tuyến tam giác vuông BEA
=> \(\widehat{MEB}=\widehat{MBE}\)
EI là trung tuyến tam giác vuông HEC
=> \(\widehat{IEH}=\widehat{IHE}\)
Mà: \(\widehat{MBE}=\widehat{ECH}\) (cùng phụ \(\widehat{BAC}\) )
=> \(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=\widehat{ECH}+\widehat{EHI}=90^o\)
=> ME vuông góc EI hay ME là tiếp tuyến của đường tròn ngoại tiếp tam giác CDE.
c. Xét tam giác vuông BDH và tam giác vuông ADC có:
\(\widehat{BHD}=\widehat{ACD}\) (cùng phụ \(\widehat{HBD}\) )
=> \(\Delta BDH\sim\Delta ADC\)
=> \(\dfrac{BD}{DA}=\dfrac{DH}{DC}\)
<=> \(DH.DA=BD.DC\le\left(\dfrac{BD+DC}{2}\right)^2=\dfrac{BC^2}{4}=\dfrac{3R^2}{4}\)
\(DH.DA\) max \(=\dfrac{3R^2}{4}\) khi và chỉ khi BD = DC <=> D là trung điểm của BC hay A là điểm chính giữa cung lớn BC.
☕T.Lam
a) Ta có: \(\widehat{BFC}=90^0\)(\(CF\perp AB\))
nên F nằm trên đường tròn đường kính BC(Định lí)(1)
Ta có: \(\widehat{BEC}=90^0\left(BE\perp AC\right)\)
nên E nằm trên đường tròn đường kính BC(Định lí)(2)
Từ (1) và (2) suy ra E và F cùng nằm trên đường tròn đường kính BC
mà B,C cùng nằm trên đường tròn đường kính BC
nên E,F,B,C cùng thuộc đường tròn đường kính BC
hay BFEC là tứ giác nội tiếp(đpcm)
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b; góc ABD=1/2*180=90 độ
=>BD vuông góc AB
=>BD//CH
góc ACD=1/2*180=90 độ
=>CD vuông góc AC
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>BC cắt HDtại trung điểm của mỗi đường
=>H,M,D thẳng hàng
a) Xét tứ giác BCEF có
\(\widehat{BEC}=\widehat{CFB}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{CFB}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
help me