K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

2: ΔADB vuông tại D có DG vuông góc AB

nên AG*AB=AD^2

ΔADC vuông tại D

mà DH là đường cao

nên AH*AC=AD^2=AG*AB

=>AH/AB=AG/AC
=>ΔAHG đồng dạng với ΔABC

=>góc AGH=góc ACB=goc AFE

=>HG//FE

1: Xét tứ giác BCEF có góc BFC=góc BEC=90 độ

nên BCEF là tứ giác nội tiếp

2: AG*AB=AD^2

AH*AC=AD^2

=>AG*AB=AH*AC

=>AG/AC=AH/AB

=>ΔAGH đồng dạng với ΔACB

=>góc AGH=góc ACB=góc AFE

=>FE//GH

22 tháng 11 2022

a: Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD//CH

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: BHCD là hình bình hành

nên BC cắt HD tại trung điểm của mỗi đường

=>I là trung điểm của HD

Xét ΔDAH có DI/DH=DO/DA

nen Io//AH và IO=AH/2

=>AH=2OI

c: G là trọng tâm

nên AG=2AI

Xét ΔAHD có

AI là trung tuyến

AG=2/3AI

DO đó: G là trọng tâm

26 tháng 4 2023

giải thích rõ hơn câu c dùm mk dc không ạ

 

13 tháng 6 2021

1) Ta có: \(\angle AEB+\angle ADB=90+90=180\Rightarrow AEBD\) nội tiếp

2) Tương tự ta chứng minh được: \(ADCF\) nội tiếp

\(\Rightarrow\angle ADF=\angle ACF=\angle ABC\)

3) Ta có: \(\angle AED=\angle ABC=\angle ADF\)

Tương tự \(\Rightarrow\angle ADE=\angle AFD\)

Xét \(\Delta ADE\) và \(\Delta AFD:\) Ta có: \(\left\{{}\begin{matrix}\angle ADE=\angle AFD\\\angle AED=\angle ADF\end{matrix}\right.\)

\(\Rightarrow\Delta ADE\sim\Delta AFD\left(g-g\right)\Rightarrow\dfrac{AD}{AF}=\dfrac{AE}{AD}\Rightarrow AD^2=AE.AF\)

4) \(\Delta ADE\sim\Delta AFD\Rightarrow\angle DAE=\angle DAF\)

\(\Rightarrow AD\) là phân giác \(\angle EAF\)

Vì M,N là trung điểm AE,AF \(\Rightarrow\left\{{}\begin{matrix}AM=\dfrac{1}{2}AE\\AN=\dfrac{1}{2}AF\end{matrix}\right.\)

Theo đề: \(AD=AM+AN\Rightarrow AD^2=\left(AM+AN\right)^2\)

\(\Rightarrow AE.AF=\dfrac{1}{4}\left(AE+AF\right)^2\Rightarrow4AE.AF=\left(AE+AF\right)^2\)

mà \(\left(AE+AF\right)^2\ge4AE.AF\) (BĐT Cô-si) 

\(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A có \(AD\) là phân giác \(\angle EAF\)

\(\Rightarrow AD\) là trung trực \(EF\Rightarrow AD\bot EF\) mà \(AD\bot BC\)

\(\Rightarrow BC\parallel EF\) 

Ta có: \(\angle EBC=\angle EBA+\angle ABC=\angle ACB+\angle ACF=\angle FCB\)

\(\Rightarrow BCFE\) là hình thang cân có \(AD\) là trung trực EF

\(\Rightarrow AD\) là trung trực BC mà \(O\in\) trung trực BC

\(\Rightarrow A,O,D\) thẳng hàng

undefined

 

3 tháng 3 2021

h vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

 

a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BCEF là tứ giác nội tiếp đường tròn đường kính BC

Kẻ tiếp tuyến Ax của (O)

=>Ax\(\perp\)OA tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{AEF}\left(=180^0-\widehat{FEC}\right)\)

nên \(\widehat{xAC}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//FE

ta có: Ax//FE

OA\(\perp\)Ax

Do đó: OA\(\perp\)FE

b: Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔADB vuông tại D và ΔACK vuông tại C có

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB~ΔACK

=>\(\dfrac{AD}{AC}=\dfrac{AB}{AK}\)

=>\(AD\cdot AK=AB\cdot AC\)

5 tháng 6 2016

Mọi người giải dùm câu b và c được rồi ạ

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc đối

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BHCK có 

I là trung điểm của đường chéo BC(gt)

I là trung điểm của đường chéo HK(H đối xứng với K qua I)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay BH//CK

Suy ra: BE//CK

mà BE⊥AC(gt)

nên CK⊥AC

⇔C nằm trên đường tròn đường kính AK

mà C,A cùng thuộc (O)

nên AK là đường kính của (O)

hay A,O,K thẳng hàng(đpcm)