K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Có \(C^4_7=35\left(cách\right)\)

b: SỐ cách chọn là \(C^2_8\cdot C^2_7+C^3_8\cdot C^1_7+C^4_8=1050\left(cách\right)\)

4 tháng 8 2019

Đáp án A

Ta xét 2 trường hợp:

TH1: Đề thi có 9 câu hỏi nằm trong 25 câu mà học sinh nắm được ⇒ P 1 = C 25 9 . C 5 1 C 30 10  

TH2: Đề thi có 10 câu hỏi nằm trong 25 câu mà học sinh nắm được ⇒ P 2 = C 25 10 C 30 10  

Vậy xác suất cần tính là  P = P 1 + P 2 = 0 , 449

7 tháng 2 2019

Đáp án A

Ta xét 2 trường hợp

TH1:

Đề thi có 9 câu hỏi nằm trong 25 câu mà học sinh nắm được

TH2:

Đề thi có 10 câu hỏi nằm trong 25 câu mà học sinh nắm được

Vậy xác suất cần tính là

 

8 tháng 7 2018

Đáp án A

26 tháng 9 2018

Đáp án A

Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi

có C 20 4 = 4845  đề thi.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc

có C 10 2 . C 10 2 = 2025  trường hợp.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc

có C 10 3 . C 10 1 = 1200  trường hợp.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc

có C 10 4 = 210  trường hợp.

Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc

có 2025 + 1200 + 210 = 3435  trường hợp.

Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là

3435 4845 = 229 323

19 tháng 3 2017

Đáp án A

Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi có C 20 4 = 4845  đề thi.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc

có C 10 2 . C 10 2 = 2025  trường hợp.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc

có C 10 3 . C 10 1 = 1200  trường hợp.

Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc

có C 10 4 = 210  trường hợp.

Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc

có 2025 + 1200 +210 =3435 trường hợp.

Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là

3435 4845 = 229 323

15 tháng 6 2017

Chọn A

24 tháng 1 2018

Số phần tử của không gian mẫu là n Ω = C 30 5 = 142506  

Gọi A là biến cố: “đề thi lấy ra là một đề thi tốt”.

Vì trong một đề thi “tốt” có cả ba câu dễ, trung bình và khó đồng thời số câu dễ không ít hơn 2 nên ta xét các trường hợp sau:

Ÿ Trường hợp 1: Đề thi gồm 3 câu dễ, 1 câu trung bình và 1 câu khó có C 15 1 C 10 1 C 5 1  cách.

Ÿ Trường hợp 2: Đề thi gồm 2 câu dễ, 2 câu trung bình và 1 câu khó có C 15 2 C 10 2 C 5 1  cách.

Ÿ Trường hợp 3: Đề thi gồm 2 câu dễ, 1 câu trung bình và 2 câu khó có C 15 2 C 10 1 C 5 2  cách.

Suy ra n A = C 15 3 C 10 1 C 5 1 + C 15 2 C 10 2 C 5 1 + C 15 2 C 10 1 C 5 2 = 56875  

Vậy xác suất cần tìm là P A = n A n Ω = 56875 142506 = 625 1566

Đáp án D

29 tháng 3 2019

Đáp án B

Gọi A là biến cố “Rút được đề thi có 4 câu đã học thuộc”, ta lần lượt có

Vì ngân hàng câu hỏi có 100 câu và mỗi đề thi có 5 câu nên có 

14 tháng 12 2019