chung minh rang: a,b so thuc
a^2+b^2+4>=ab-2(a+b) va a^2+b^2+4>=ab+2(a+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có A=(a+2002)(a+2003) là 2 nguyên liên tiếp
=>A chia hết cho 2 (1)
Có B=ab(a+b)
Nếu a và b cùng là số chẵn=> ab﴾a+b﴿ chia hết cho 2
Nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿ => ab ﴾a+b﴿ chia hết cho 2
Nếu a và b cùng lẻ => ﴾a+b﴿ chẵn => ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2
=> B=ab﴾a+b﴿ chia hết cho 2 (2)
Từ (1)và(2)=>A và B luôn là bội của 2 (đpcm)
ọi k là một số nguyên, theo đề ta có:
a=3k+1
b=3k+2
ab=(3k+1)(3k+2)=9k^2+9k+2
vì 9k^2 và 9k chia hết cho 3
nên ab chia 3 dư 2
- Vì a chia cho 3 dư 1 nên a = 3m + 1 ( m \(\in\)N )
- Vì b chia cho 3 dư 2 nên b = 3n + 2 ( n\(\in\)N )
Ta có :
a . b = ( 3m + 1 ) ( 3n + 2 )
= 3m . 3n + 3m . 2 + 1 . 3n + 1 . 2
= ( 9 mn + 6m + 3n ) + 2
= 3 ( 3mn + 2m + n ) + 2 ....
Vậy ab chia cho 3 dư 2 .
a+b+c=0 <=> (a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>a2+b2+c2=-2(ab+bc+ca)
<=>(a2+b2+c2)2=[-2(ab+bc+ca)]2
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2b2+b2c2+c2a2)
<=>a4+b4+c4=2(a2b2+b2c2+c2a2) (1)
Lại có (ab+bc+ca)2 = a2b2+b2c2+c2a2+2abc(a+b+c) = a2b2+b2c2+c2a2 (vì a+b+c=0) (2)
Từ (1) và (2) => đpcm