A=1/2+1/2mu2+1/2mu3+.....+1/2mu10
Chứng minh: A+1/2mu10=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)
câu 1 :19
câu 2:1
câu 3:3
câu 4:4
câu 5:có chia hết cho 3 vì tổng =2046
câu 1:19
câu 2:1
câu 3:3
câu 4:4
câu 5: có chia hết cho ba vì tổng = 2046
\(\Rightarrow\frac{1}{2}A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{11}}\)
\(\Rightarrow\) \(\frac{1}{2}A=A-\frac{1}{2}=\frac{1}{2^{10}}-\frac{1}{2}\)
Vậy \(A=\left(\frac{1}{2^{10}}-\frac{1}{2}\right):\frac{1}{2}=\frac{2}{2^{10}}-1\)
Do đó \(A+\frac{1}{2^{10}}=\frac{2}{2^{10}}-1+\frac{2}{10}=1\)