Có thể lập được bảo nhiêu số tự nhiên nhỏ hơn 300 từ các chữ số 2,6,1 hoặc 3, biết rằng mỗi chữ số chỉ được dùng một lần trong 1 số bất kì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chia hết cho 9 mà mỗi số xuất hiện 1 lần.
Ta có: 1+2+3+4+5+6=21
Vậy các số chia hết cho 9 sẽ có tổng các chữ số là 9 hoặc 18
Số có 2 chữ số: 36; 63; 45; 54 => 4 số
Số có 3 chữ số: 126; 621; 162; 612; 216; 261; 234; 243; 342; 324; 432; 423; 135; 153; 351; 315; 513; 531 => 18 số
Số có 4 chữ số: 3456; 3465; 3546; 3564; 3654; 3645 => 6 số x 4 cách đổi = 24 số
Số có 5 chữ số: 12456; 12465; 12564; 12546; 12645; 12654 => Số lượng: 6 x 4 x 5 = 120 số
Tổng thoả mãn: 4+18+24+120= 166(số)
mk cho bài kham khảo nha :
có thể trở thành tử số mới.Và mỗi tử số mới có được ta đều tìm được mẫu số tương ứng.
Số có 2 chữ số nhỏ nhất chia hết cho 3 là 12 và số lớn nhất có 2 chữ số chia hết cho 3 là 99.
Số các phân số là: (99-12) : 3 + 1= 30 ( phân số)
:D
Bài tham khảo nè:
Với ba chữ số 1,2,3 thì có:
- Chữ số hàng trăm có 3 cách chọn
- Chữ số hàng chục có 3 cách chọn
- Chữ số hàng đơn vi cũng có 3 cách chọn
Vậy ta viết được các số có 3 chữ số là:
3 x 3 x 3 = 27 (số)
Với 0,1,2 thì có:
- Chữ số hàng trăm có 2 cách chọn ( Vì số 0 không thể đứng đầu được)
- Chữ số hàng chục có 3 cách chọn
- Chữ số hàng đơn vị có 3 cách chọn
Vậy ta viết được các số có 3 chữ số là:
2 x 3 x 3 = 18 (số)
Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10
Dễ thấy 1+3+6 = 1+4+5 = 2+3+5
Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)
Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)
Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)
(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)
Theo quy tắc nhân ta có 3.6.6 = 108
Vậy có 108 số cần tìm
Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??
Gọi là số cần lập a1 + a2 + a3 = 10
Theo bài ra ta có: (1)
Mà và đôi một khác nhau nên
a1,a2,a3,a4,a5,a6 = 1 + 2 + 3 + 4 + 5 + 6 =21
(2)
Từ (1), (2) suy ra: a1 + a2 + a3 = 10
Phương trình này có các bộ nghiệm là: ( a1 , a2 , a3 ) = (1,3,6); (1,4,5); (2,3,5)
Với mỗi bộ ta có 3!.3!=36 số.
Vậy có cả 3.36=108 số cần lập.
Chọn C.
Chọn đáp án C
Cách 1: Gọi x = a 1 a 2 . . . a 6 ¯ , a i ∈ 1 , 2 , 3 , 4 , 5 , 6 là số cần lập
Theo bài ra ta có:
Mà a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ∈ 1 , 2 , 3 , 4 , 5 , 6 và đôi một khác nhau nên
Từ (1), (2) suy ra: a 1 + a 2 + a 3 = 10
Phương trình này có các bộ nghiệm là:
Với mỗi bộ ta có 36 số.
Vậy có cả thảy 3.36=108 số cần lập.
Cách 2: Gọi x = a b c d e f là số cần lập
Ta có:
⇒ a + b + c = 11 .
Do a , b , c ∈ 1 , 2 , 3 , 4 , 5 , 6
Suy ra ta có các cặp sau:
Với mỗi bộ như vậy ta có 3! cách chọn a, b, c và 3! cách chọn d ,e ,f
Do đó: 3!.3!.3!= 108 số thỏa yêu cầu bài toán