Cho tam giác ABC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Trên tia đối của tia BD, lấy điểm H sao cho BH = AC. Trên tia đối của tia CE, lấy điểm K sao cho CK = AB. Chứng minh tam giác ABC cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\widehat{ABD}+\widehat{A}=\widehat{A}+\widehat{ACE}=90^0\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
\(\Rightarrow180^0-\widehat{ABD}=180^0-\widehat{ACE}\)
\(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)
Xét tam giác ABH và tam giác ACK có:
\(AB=CK\)
\(\widehat{ABH}=\widehat{ACK}\)
\(HB=AC\)
nên tam giác ABH= tam giác KCA (c.g.c)
\(\Rightarrow AH=AK\)
mình làm thế này thôi nha, hình bạn tự vẽ nha:
Xét tam giacsBAH và tam giác CKA có
AB=CK(gt)
BH=AC(gt)
Góc B=góc C
Suy ra tam giác ABH=tam giác CKA(c-g-c)
Suy ra AH=AK(hai cạnh tương ứng)
k mình nha
Câu hỏi của Akira Aiko Kuri - Toán lớp 7 - Học toán với OnlineMath
tam giác ABH bằng tam giác AKC ( cạnh-góc-cạnh ) => AH = AK
Giải:
Ta có: ACKˆ=Aˆ+AECˆ=Aˆ+90oACK^=A^+AEC^=A^+90o ( t/c góc ngoài )
ABHˆ=Aˆ+ADBˆ=Aˆ+90oABH^=A^+ADB^=A^+90o ( t/c góc ngoài )
⇒ACKˆ=ABHˆ⇒ACK^=ABH^
Xét ΔABH,ΔKCAΔABH,ΔKCA có:
BH = CA ( gt )
ABHˆ=KCAˆ(cmt)ABH^=KCA^(cmt)
AB = CK ( gt )
⇒ΔABH=ΔKCA(c−g−c)⇒ΔABH=ΔKCA(c−g−c)
⇒AH=AK⇒AH=AK ( cạnh t/ứng ) ( đpcm )
Vậy...
ABCDHKE
Giải:
Ta có: gócACK=gócA+gócAEC=gócA+90 độ gócACK=gócA+gócAEC=gócA+90độ ( t/c góc ngoài )
gócABH=gócA+gócADB=gócA+90độ gócABH=gócA+gócADB=gócA+90độ ( t/c góc ngoài )
⇒gócACK=gócABH⇒gócACK=gócABH
Xét ΔABH,ΔKCAΔABH,ΔKCA có:
BH = CA ( gt )
gócABH=gócKCA (cmt) góc ABH=góc KCA(cmt)
AB = CK ( gt )
⇒ΔABH=ΔKCA(c−g−c)⇒ΔABH=ΔKCA(c−g−c)
⇒AH=AK⇒AH=AK ( cạnh t/ứng ) ( đpcm )
Vậy...