cho tam giác ABC có diện tích là 240 cm². Trên AB,AC,BC lần lượt trung điểm M,N,P . Nối MN,NP và PM. Tính diện tích các tam giác AMN,CNP,BMP,MNP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối AP vì P là truing điểm của BC nên BP = PC .
Tương tự AN = NC; AM = MB
Hai tam giác ABP và APC có đáy bằng nhau và chung chiều cao nên diện tích của chúng bằng nhau và bằng : 240 : 2 = 120 ( cm2 )
Hai tam giác PAN và PNC có đáy bằng nhau và chung chiều cao nên \(S_{PAN}=S_{PNC}=120:2=60\left(cm^2\right)\)
Tương tự ta cũng có \(S_{PAM}=S_{PBM}=60cm^2\)
Như vậy,ta có : \(S_{PNC}=S_{PBM}=60cm^2\)
Nối BN, lí luận tương tự được : \(S_{PNC}=S_{MAN}=60cm^2\)
Ta có : \(S_{MNP}=S_{ABC}-\left(S_{PNC}+S_{MAN}+S_{PMB}\right)=240-\left(60+60+60\right)=60cm^2\)
Vậy 4 tam giác có diện tích bằng nhau và bằng 60cm2
M là điểm chính giữa của cạnh AC
=>M là trung điểm của AC
N là điểm chính giữa của cạnh AB
=>N là trung điểm của AB
P là điểm chính giữa của cạnh BC
=>P là trung điểm của BC
Xét ΔAMN và ΔACB có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\left(=\dfrac{1}{2}\right)\)
\(\widehat{A}\) chung
Do đó: ΔAMN đồng dạng với ΔACB
=>\(\dfrac{S_{AMN}}{S_{ACB}}=\left(\dfrac{AM}{AC}\right)^2=\dfrac{1}{4}\)
=>\(S_{AMN}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔBNP và ΔBAC có
\(\dfrac{BN}{BA}=\dfrac{BP}{BC}\left(=\dfrac{1}{2}\right)\)
\(\widehat{B}\) chung
Do đó: ΔBNP~ΔBAC
=>\(\dfrac{S_{BNP}}{S_{BAC}}=\left(\dfrac{BN}{BA}\right)^2=\dfrac{1}{4}\)
=>\(S_{BNP}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Xét ΔCPM và ΔCBA có
\(\dfrac{CP}{CB}=\dfrac{CM}{CA}\left(=\dfrac{1}{2}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCPM~ΔCBA
=>\(\dfrac{S_{CPM}}{S_{CBA}}=\left(\dfrac{CP}{CB}\right)^2=\dfrac{1}{4}\)
=>\(S_{CPM}=\dfrac{1}{4}\cdot120=30\left(cm^2\right)\)
Ta có: \(S_{ANM}+S_{BNP}+S_{NMP}+S_{MPC}=S_{ABC}\)
=>\(S_{MPN}+30+30+30=120\)
=>\(S_{MPN}=30\left(cm^2\right)\)
- tôi yêu đảng / yêu nước việt nam / ánh sáng của đảng dẫn đường chỉ lôi cho chúng ta