K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=8cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/6=CD/10=(AD+CD)/(6+10)=8/16=1/2

=>AD=3cm; CD=5cm

\(BD=\sqrt{3^2+6^2}=3\sqrt{5}\left(cm\right)\)

b: góc EBD=góc EDB

=>góc EDB=góc ABD

=>DE//AB

Xét ΔCAB có DE/AB

nên DE/AB=CD/CA=5/8

=>DE/6=5/8

=>DE=15/4(cm)

a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

b: ΔDEC vuông tại E 

=>DE<DC

c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

d: Xét ΔDBC có góc DBC=góc DCB

nên ΔDBC cân tại D

e: gọi giao của CF và AB là H

Xét ΔBHC có

BF,CA là đường cao

BF cắt CA tại D

=>D là trực tâm

=>HD vuông góc BC tại E

=>H,D,E thẳng hàng

=>BA,DE,CF là trực tâm

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

a) Xét ΔADB vuông tại A và ΔEDB vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔADB=ΔEDB(cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

b) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

a: Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

BC=10cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó: BD=30/7(cm); CD=40/7(cm)

b: Xét ΔABC có DE//AC

nên DE/AC=BD/BC

=>DE/8=3/7

hay DE=24/7(cm)