K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

54cm2 đấy

28 tháng 3 2017

Kết quả =54 cm vuông

30 tháng 6 2016

vi hinh vuong mnpq co do dai canh gap 3 lan canh hinh vuong abcd nen sien h hinh vuong mnpq cung se gap len 3 lan

dien h hinh vuong mnpq la: 24*3=72

27 tháng 3 2019

Chọn đáp án A

Đường chéo hình vuông AC =  2

Xét tam giác SAC, ta có

Chiều cao của khối chóp là SA =  3

Diện tích hình vuông ABCD là

Thể tích khối chóp S. ABCD là

17 tháng 7 2018

Đáp án C

4 tháng 3 2018

* Chia hình vuông ABCD thành 4 hình vuông nhỏ có diện tích bằng nhau.( Vì hai cạnh kề với góc vuông bằng bán kình của hình tròn.)

* Diện tích mỗi hình vuông nhỏ la : 28 :4 = 7 ( cm2 )

- Mà diện tích mỗi hình vuông nhỏ bằng: r x r = 7 ( cm2 )

* Diện tích hình tròn là: r x r x 3,14 = 7 x 3,14 = 21,98 ( cm2 )

                                                                         Đ/S: 21, 98 cm2.

4 tháng 3 2018

ko bít

23 tháng 3 2019

a: ABCD là hình vuông

=>AB=BC=CD=DA và \(\widehat{DAB}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^0\) và AC là phân giác của \(\widehat{DAB}\) và DB là phân giác của góc ADC; BD là phân giác của góc ABC

AC là phân giác của góc DAB

=>\(\widehat{CAB}=\dfrac{1}{2}\widehat{DAB}=\dfrac{1}{2}\cdot90^0=45^0\)

AEBF là hình vuông

=>AB là phân giác của \(\widehat{FAE}\) và \(\widehat{FAE}=90^0\) 

=>\(\widehat{BAE}=\dfrac{1}{2}\cdot\widehat{EAF}=45^0\)

\(\widehat{BAE}=45^0\)

\(\widehat{BAC}=45^0\)

Do đó: \(\widehat{BAE}=\widehat{BAC}=45^0\)

=>AE và AC là hai tia trùng nhau

=>A,E,C thẳng hàng

BD là phân giác của góc ABC

=>\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

AEBF là hình vuông

=>BA là phân giác của góc EBF

=>\(\widehat{ABE}=\dfrac{1}{2}\cdot\widehat{FBE}=45^0\)

=>\(\widehat{ABE}=\widehat{ABD}\)

=>BE,BD là hai tia trùng nhau

=>B,E,D thẳng hàng

B,E,D thẳng hàng

A,E,C thẳng hàng

Do đó: BD cắt AC tại E

ADCB là hình vuông

=>AC=BD và AC vuông góc với BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại E và E là trung điểm chung của AC và DB

E là trung điểm của AC nên AC=2AE=2(cm)

E là trung điểm của BD nên BD=2EB=2(cm)

Xét tứ giác ADCB có DB\(\perp\)AC

nên \(S_{ADCB}=\dfrac{1}{2}\cdot DB\cdot AC=\dfrac{1}{2}\cdot2\cdot2=2\left(cm^2\right)\)

b: ADCB là hình vuông

=>\(S_{ADCB}=AB^2\)

=>\(AB^2=2\)

=>\(AB=\sqrt{2}\left(cm\right)\)