chứng minh A = 413 + 325 - 88 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(32^{12}\cdot98^{20}\)
\(=2^{60}\cdot2^{20}\cdot7^{40}\)
\(=2^{80}\cdot7^{40}\)
\(=\left(2^2\cdot7\right)^{40}=28^{40}\)(đpcm)
b) Ta có: \(3^{1994}+3^{1993}-3^{1992}\)
\(=3^{1992}\left(3^2+3-1\right)\)
\(=3^{1992}\cdot11⋮11\)
Bài 2:
a) Ta có: \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\cdot10+2^{n+3}\cdot3⋮6\)
b) Ta có: \(4^{13}+32^5-8^8\)
\(=2^{26}+2^{25}-2^{24}\)
\(=2^{24}\left(2^2+2-1\right)\)
\(=2^{24}\cdot5⋮5\)
c) Ta có: \(2014^{100}+2014^{99}\)
\(=2014^{99}\left(2014+1\right)\)
\(=2014^{99}\cdot2015⋮2015\)
Tổng các chữ số là:8+8+.........+8+8(n số 8)+n
=8n+n
=9n chia hết cho 9 nên 888...88(n số 8)+n chia hết cho 9
Vậy A chia hết cho 9
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
\(8^8+2^{20}\)
\(=\left(2^3\right)^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)\)
\(=2^{20}\cdot17⋮17\)
\(1,8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
\(2,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\\ A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\\ A=3\left(2+2^3+...+2^{119}\right)⋮3\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)=7\left(2+...+2^{118}\right)⋮7\\ A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\\ A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(2+...+2^{117}\right)=15\left(2+...+2^{117}\right)⋮15\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Ta có:\(A=4^{13}+32^5-8^8\)
\(A=...4+....2-...6\)
\(A=....0\)
Vì các số có chữ số tận cùng là 0 và 5 thì chia hết cho 5
=> A chia hết cho 5(có chữ số tận cùng là 0)
\(4^{13}=\left(4^2\right)^6\times4=\left(...6\right)^6\times4=\left(...6\right)\times4=\left(...4\right)\)Vậy chữ số tận cùng của 413 là 4.
\(32^5=32^4\times32=\left(...6\right)\times32=\left(...2\right)\)Vậy chữ số tận cùng của 325 là 4.
\(8^8=\left(8^4\right)^2=\left(...6\right)^2=\left(...6\right)\)Vậy chữ số tận cùng của 88 là 4.
Ta có : (...4) + (...2) - (...6) = (...0) Vậy chữ số tận cùng của A = 0 \(\Rightarrow\) A chia hết cho 5.
Vậy A chia hết cho 5 (đpcm).