K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: IM vuông góc AC

AB vuông goc AC

=>IM//AB

=>góc BAM=góc IMA

b: XétΔCIM vuông tại I và ΔCIN vuông tại I có

CI chung

IM=IN

=>ΔCIM=ΔCIN

c: Xét tứ giác AKMI có

MI//AK

MI=AK

góc IAK=90 độ

=>AKMI là hình chữ nhật

=>MK//AC

d: AKMI là hình chữ nhật

=>AM=KI

a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

IM=IN

Do đó: ΔIMC=ΔINC

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔAMD có

AI vừa là đường cao, vừa là trung tuyến

=>ΔAMD cân tại A

=>AB là phân giác của góc MAD(1) và AM=AD

Xét ΔAME có

AC vừa là đường cao, vừa là trung tuyến

=>ΔAME cân tại A

=>AC là phân giác của góc MAE(2); AM=AE

=>AE=AD
b: Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

a: BC=căn 8^2+6^2=10cm

b: Xét ΔABC có AB>AC

nên góc B<góc C

c: Xét ΔAMN có

AI vừa là đường cao, vừa là trung tuyến

=>ΔAMN cân tại A

d: Xét ΔBCK có

BA vừa là đường cao, vừa là trung tuyến

=>ΔBCK cân tại B

mà BA là đường cao

nên BA là phân giác của góc CBK(1)

Xét ΔBMN có

BI vừa là đường cao, vừa là trung tuyến

=>ΔBMN cân tại B

=>BA là phân giác của góc MBN

=>BA là phân giác của góc CBN(2)

Từ (1), (2) suy ra N,K,B thẳng hàng

13 tháng 12 2021

a/ Xét △IMC và △INC có:

 \(IM=IN\left(gt\right)\)

 \(\hat{MIC}=\hat{NIC}=90^o\)

 CI là cạnh chung

\(\Rightarrow\Delta IMC=\Delta INC\left(c.g.c\right)\)

b/ Từ câu a suy ra \(\hat{MCI}=\hat{NCI}\) hay \(\hat{BCA}=\hat{KCA}\) ⇒ CA là đường phân giác của △CBK.

+) \(CA\perp AB\) (do △ABC vuông tại A) ⇒ CA là đường cao của △CBK

⇒ △CBK cân tại C

\(\Rightarrow CB=CK\)

Mặt khác: \(MB=\dfrac{1}{2}CB=MC\) (do M là trung điểm của BC).

\(\Rightarrow CN=\dfrac{1}{2}CK=NK\) (do CN=MC, CB=CK (cmt))

⇒ N là trung điểm của CK.

c/ Xét △CME và △BMA có:

 \(CM=MB\left(gt\right)\)

 \(\hat{AMB}=\hat{CME}\) (đối đỉnh)

 \(AM=ME\left(gt\right)\)

\(\Rightarrow\Delta CME=\Delta BMA\left(c.g.c\right)\)

\(\Rightarrow\hat{ABM}=\hat{MCE}\) (hai góc tương ứng) 

⇒ AB // CE

d/ Mình chưa nghĩ ra, khi nào nghĩ ra mình sẽ bổ sung.

13 tháng 12 2021

cảm ơn bạn nhiều nha cảm ơn !!!

a: ta có: HK\(\perp\)AC

AB\(\perp\)AC

Do đó HK//AB

b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có

AH chung

HK=HI

Do đó; ΔAHK=ΔAHI

Suy ra: \(\widehat{KAH}=\widehat{IAH}\)

c: ta có: ΔAHK=ΔAHI

nên AK=AI

hay ΔAKI cân tại A

1 tháng 4 2022

a)ta có: HKAC

             ABAC

mà 2 góc này nằm ở vị trí so le trong

=> HK//AB

b: Xét ΔAHK vuông tại H và ΔAHI vuông tại H có

AH chung

HK=HI

=> ΔAHK=ΔAHI(g.h-c.g.v)

\(=>\widehat{HAK}=\widehat{HAI}\)

c)theo chứng minh câu B ta  có

 ΔAHK=ΔAHI

=> AK=AI (2 cạnh tg ứng)

=> ΔAKI cân tại A